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Chapter 1
Hardware Obfuscation: Techniques and
Open Challenges

1.1 Introduction

There are many applications for IC reverse-engineering. While there are
legitimate reasons for IC reverse-engineering, some have malicious intend such
as as IP infringement and technological espionage. Particularly, Intellectual
Property (IP) theft and counterfeit products are a major challenge for the
industry. In many cases, the initial step in counterfeiting or stealing of IP is
to reverse-engineer a chip or IP core in order to integrate the IP into one’s
own design illegitimately. Hence, there are various reasons why hardware
companies demands obfuscation methods to hamper reverse-engineering of
their designs. For security-critical devices reverse-engineering can also be a
potential attack vector. An adversary can leverage reverse-engineering to
disclose internal details of the design in order to enable further attacks on
the system. For example, implementation attacks such as side-channel or
fault attacks exploit implementation structures and thus an attacker gaining
knoledge of the used implementation and countermeasures gains a significant
attack advantage. In addition to these malicious goals, reverse-engineering
can also be used to detect patent infringements and IP theft as well as to
identify Hardware Trojans.

As a consequence, hardware obfuscation techniques that hamper reverse-
engineering are of great interest. In this chapter, we present and discuss
state-of-the-art hardware obfuscation techniques at two distinct levels. Hard-
ware obfuscation at the layout level targets the extraction of the device’s
netlist. To be more precise, the underlying principle is to prevent the distinct
identification of combinatorial gates. In Section 1.2, we provide a summary of
the proposed layout-level obfuscation techniques and additionally a security
evaluation. However, not every case of IP piracy starts with reverse-engineering
of the targeted Integrated Circuit (IC). For example, most IP provides do not
manufacture their own chips, but only sell IP cores in the form of hard and
soft IP cores. In these scenarios, the adversary is already in possession of the
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netlist (without the need of IC reverse-engineering).
In order to prevent the disclosure of internal details, obfuscation transforma-
tions at the netlist level are required. In Section 1.3, we present and discuss
the state-of-the-art proposed netlist-level obfuscation methods and automatic
reverse-engineering capabilities. Furthermore, we address various limitations
and open challenges for the different netlist-level obfuscation techniques.

1.2 Layout-Level Obfuscation

The first step in reverse-engineering of a targeted Application Specific Inte-
grated Circuit (ASIC) is to obtain precise images of each chip’s layer and
subsequently to identify the individual gates and their connectivity. Based
on this information the netlist of the design can be derived which enables
the reverse-engineer to analyze the design as well as to make copies of it.
Hence, the principal goal of layout-level obfuscation is to hamper this netlist
disclosure by use of special combinatorial gates that cannot be correctly
identified via visual reverse-engineering techniques by using a Scanning Elec-
tron Microscope (SEM). Layout-level obfuscation has been of interest in the
industry for many years – the first patents date back to the 1980s [Pec86].
However, despite the industry’s ongoing interest in this topic, it has been
largely ignored by the the scientific community and only recently the first
works have appeared [RSSK13, CBCW14, SHF14, MBPB15].

In the following, we introduce several proposals of how layout level obfusca-
tion can be realized. Particularly, we illustrate the so-called camouflage gates
or look-alike gates that are utilized instead of standard cells in order to prevent
the visual identification of the implemented logic function. These camouflage
gates are the main building block in layout level hardware obfuscation.

1.2.1 Camouflage gates

The main idea of camouflage gates is to hide the logic function of the gates in
design layers that are hard to detect visually. The main assumption of most
camouflage gates is that metal layers and polysilicon layers are easily recogniz-
able using visual reverse-engineering techniques such as SEMs. Hence, the goal
of building camouflage gates is to create gates that are identical at these layers
but still have a different functionality. The most common way to achieve this
is to only change the dopant masks, i.e., to build gates that are identical on all
design layers and only differ in the dopant polarity in some active areas. For
example, this technique is used in [CBCW14, SHF14, MBPB15]. A different
approach is to use a mixture of real and dummy contacts to camouflage
the functionality of the obfuscated gates [RSSK13]. The main idea behind
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this is that extra effort is needed to reverse-engineer the contacts. However,
compared to dopant-based obfuscation, contact-based obfuscation is consider-
ably easier to reverse-engineer. A more detailed analysis of the difficulty of
reverse-engineering both dopant-based and contact-based obfuscation – as
well as no obfuscation at all – is provided in Section 1.2.4.

Obfusgate camouflage gates: In the following the main idea behind
dopant-based camouflage gates is explained using the example of a camouflage
gate called Obfusgate, which has been proposed in [MBPB15]. The heart of
the Obfusgate is a so-called Obfuscell. Depending on the dopant polarity in its
active areas, an Obfuscell can be configured to be either an inverter, a buffer
(input=output), or to output a constant ’1’ or ’0’. Figure 1.2(a) shows the
layout of an Obfuscell. It has three active areas A1, A2, and A3. The dopant
polarity within these areas define the configuration. To create a buffer for
example, the input needs to be connected to the output via A2 as illustrated
in Figure 1.2(b). For example, the active area A2 can be used to build a direct
connection between the input and output. This is achieved by doping the
entire active area A2 positively. On the other hand, if the middle region of A2
is doped negatively, this creates a p-n-p junction and hence a diode in cut-off.
This is depicted in Figure 1.3(a). Hence, by using different dopant polarity
in the active area, one can connect or disconnect inputs. All dopant-based
camouflage gates are based on this main idea [CBCW14, SHF14, MBPB15].
In the Obfuscell design the active areas A1 and A3 have the layout of a
pmos and nmos transistor respectively (see Figure 1.3(b)) for the doping
of a pmos transistor) and hence can also create connections to the output.
Figure 1.2(b) shows the four different possible configurations of the Obfuscell.
An inverter is configured by using A1 and A3 as pmos and nmos transistors
respectively and disabling the connection in A2 as described above. If the
Obfuscell is connected as a buffer, area A2 is doped positively and hence
a connection is formed. Simultaneously, the two transistors in A1 and A3
needs to be “disabled”, i.e., their outputs should be floating. How this can be
done is depicted in Figure 1.3(d) at the example a pmos transistor (area A1).
The source contact which is connected to VDD is doped negatively instead
of positively which basically creates a well-contact and a n-p junction to
the output, i.e., a diode in cut-off. Hence, the output (drain) is floating and
therefore the transistor is “disabled”. Similarly, Figure 1.3(c) shows how the
drain can be connected to the input (connected to VDD) by doping the entire
region positively. This way the active area A1 can be used to set the output
to a constant one as needed for the “always 1” configuration (see Figure 1.2(b)
for details).

Hence, depending on the dopant polarity in A1, A2 and A3, the Obfuscell is
either an inverter, a buffer (i.e., input = output), a constant ’1’ or a constant
’0’. This Obfuscell is then used as a building block to build Obfusgates that
form the obfuscated standard cell library. Figure 1.1 depicts the structure
of an “Obfusgate”. It consists of five “Obfuscells” and a 4-input NAND gate.
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Depending on the configuration of the Obfuscells (i.e. on their dopant), the
Obfusgate can implement many different logic functions. For example, config-
uring all Obfuscells as buffers results in a four input AND gate. Configuring
the four Obfuscells that are used as inputs as inverters on the other hand
results in a four input NOR gate. In total, 162 different configurations, each
with a unique logic behavior, can be realized with an Obfusgate as depicted
in Figure 1.1. Furthermore, by setting an Obfuscell that is connected to an
input of the Obfusgate to a constant ’1’, this input has effectively been turned
into a “dummy input”. Setting two input Obfuscells to a constant ’1’ and
the other Obfuscells to a buffers results in an two input AND gate. The two
inputs that are set to a constant ’1’ are the “dummy inputs” since the signal
connected to these inputs has no effect on the output. Therefore, any signal
can be connected to such an input, creating “dummy wires”. Note that an
attacker cannot distinguish between a dummy input and a regular input and
hence this technique can increase the obfuscation significantly.

Fig. 1.1 Schematic of a single Obfusgate that consists of 5 Obfuscells together with a
4-input NAND gate. Depending on the configuration of the Obfuscells, the Obfusgate
can realize 162 different logic functions.

DPD-LUT camouflage gates: Shiozaki, Hori and Fujino [SHF14] used
a different approach to build dopant-based camouflage gates. Their design
is based on a 2-bit look-up table (LUT) similar to the LUTs used in FPGA
designs. The input to these LUTs are special read-only memory cells called
Diffusion Programmable ROM (DP-ROM) that are “programmed” using the
dopant polarity. They function in exactly the same way as in the active area
A2 of the Obfuscell and depicted in Figure 1.3(a). Each DP-ROM cell consists
of two of these active areas and depending on the configuration of the dopant
the output of the cell is either connected to VDD or GND.

The camouflage gate, which is called Diffusion Programmable Device
Lookup Table (DPD-LUT), is depicted in Figure 1.4. A DPD-LUT can be
configured to any 2-input logical function, i.e., it can realize 24 = 16 different
functions. We would also like to note that this design approach is not restricted
to 2-input LUTs. In an analogous manner, it is possible to build a 3-input
DPD-LUT or, as in FPGAs, 4- or 5-input LUTs. Using larger LUTs will likely
result in a larger overhead but also in a higher grade of obfuscation. The
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(a) (b)

Fig. 1.2 a) Layout view of the Obfuscell which has three active regions A1, A2 and A3
whose dopant polarity defines the logic function of the gate. The gate can be configured
as a inverter, buffer, “always 1” or “always 0” gate as shown on the right side (b).

smallest overhead could probably be achieved by combining DPD-LUTs of
different sizes. However, the distribution of differently sized DPD-LUTs might
help an attacker gain some insight into the obfuscated design. Questions like
this have not been researched yet, and hence it is not clear to what extent
the combination of different look-alike gates into one common obfuscated
standard cell library can decrease obfuscation strength.

SMI’s approach: Cocchi et al. proposed two different strategies to build
camouflage gates [CBCW14]. The first one is to construct custom camouflage
gates whose logic function is hard to reverse-engineer but which are easily
identifiable as camouflage gates, similar to the approaches of Malik et al. and
Shiozaki et al. Unfortunately, no details are provided on how this is achieved
and how many different functions one look-alike gate can implement. The
second strategy proposed is to use existing standard cells and to only modify
a few in order to create a new functionality. Since these modifications are
hard to detect, a reverse-engineer will mistake the camouflage gate for a
"‘normal"’ standard cell and hence will come up with a faulty netlist. The
advantage of this approach is that only a few camouflage gates might offer
enough obfuscation in certain situations, while greatly reducing the introduced
overhead. However, the disadvantage is that a single camouflage gate offers less
obfuscation since it usually can only realize very few different logic functions.
How exactly Cocchi et al. modified the standard cells and how many different
functions such a cell can implement has not not been disclosed. However, this
approach shares many similarities with the dopant-level hardware Trojans
presented at CHES 2013 [BRPB13], which also change the functionality of
standard cells while making the detection of these modifications as hard as
possible. Basically, the gates are modified as also done in the Obfuscell by
connecting outputs to VDD or ground and removing transistors as depicted
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(a) (b)

(c) (d)

Fig. 1.3 Cross section view of the active areas. In (a) active area A2 is depicted
configured in “cut-off’, i.e., the input is disconnected from the output. By also doping the
middle part positively the configuration is changed to a direct connection between the
input and output. Active area A1 can be used as a pmos transistor as depicted in b). In
c) the active area A1 is doped positively instead of negatively which results in a constant
connection between input (connected to VDD) and the output. How a floating output
can be realized for A1 is shown in d). Only the source region of A1 is doped negatively
which results in a n-p junction between source and drain, i.e., a diode in cut-off.

in Figure1.3. Hence, there is a large overlap in the construction of camouflage
gates and stealthy layout-level hardware Trojans, and the Obfusgate design
was inspired by these Trojans.

1.2.2 Obfuscating the Connectivity:

Camouflage gates obfuscate the logic function of individual gates. However,
they do not conceal the connectivity, i.e., a reverse-engineer can still see
which gates are connected with each other. Ideally, a reverse-engineer should
not infer the function of a block after it has been obfuscated. But the con-
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Fig. 1.4 The structure of a DPD-LUT. It consists of four DP-ROM cells and a 2-input
multiplexer structure with the inputs A and B and the output Y . Any 2-bit logical
function can be implemented with such a DPD-LUT cell.

nectivity of the individual gates reveals a lot of useful information to a
reverse-engineer. This was illustrated in [MBPB15] with the example of the
block cipher PRESENT [BKL+07]. The PRESENT round function is depicted
in Figure 1.5(a). The key insight is that when camouflage gates are used, the
logic of the gates are not known but. When grouping cells that are connected
with each other together, the resulting graph would look like Figure 1.5(b).
The white boxes represent blocks whose logic function is not known to the
reverse-engineer due to the use of camouflage gates. However, since the con-
nections are known, it is not difficult to e.g. to identify the 4-bit SBoxes used
in PRESENT, since they are functions with four inputs and exactly four
outputs. The fact that 4-input functions as e.g. 8-input functions reveals a lot
of information to a reverse-engineer about the employed encryption function.

Hence, since a lot of information is not obfuscated, camouflage gates by
themselves are not enough to prevent reverse-engineering if the attacker’s
goal is to collect information about the design structure or to identify the
location of certain IP blocks within a chip. In order to solve this problem, the
Obfusgate library heavily uses “dummy wires” that conceal the connectivity.
More than half of the obfuscation gates in the AES SBox and PRESENT round
functions originally are 2-input gates. Each Obfusgate that is configured as a
2-input gate has two dummy inputs and hence also two dummy wires. In the
proof-of-concept implementation of the Substitution and Permutation Layer
of PRESENT, 941 dummy wires and 1103 normal wires are used[MBPB15]
This very large amount of dummy wires effectively hides the connectivity
and hence the structure of the design since an attacker cannot differentiate
between dummy wires and real wires. However, it is important to note that
this level of obfuscation comes with a large area overhead. Furthermore, the
current version randomly connects the dummy wires. While this works for
small designs such as the PRESENT round function, for larger designs the
routing overhead would increase to a level that would make routing impossible.
Hence, just random connections do not scale for large designs. Thus, how
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to efficiently obfuscate connectivity information at the layout level is an
interesting open research problem. In general, the addition of dummy wires
or connections can also be achieved using by the camouflage gates proposed
in [CBCW14, SHF14, RSSK13]. This can be realized by inserting additional
gates that only have the purpose of creating dummy wires. Again, the optimum
number of additional gates and how to integrate them has not been analyzed
and is therefore an open question.

(a) PRESENT round function (b) PRESENT round function with
obfuscated combinatorial gates

Fig. 1.5 a) Figure of the PRESENT round function, taken from [BKL+07]. b) When
the combinatorial gates are replaced with camouflage gates, a reverse-engineer does not
know the logic function of the SBoxes any longer. The structure of the round function
on the other hand is still clearly visible due to the wires connecting the individual blocks
and registers.

1.2.3 Further obfuscation techniques

Besides using camouflage gates, other techniques to hamper reverse-engineering
at the layout level have been proposed. For example, reverse-engineering non-
volatile memory can be more difficult as reverse-engineering combinatorial
memory [QCF+16]. The idea is therefore to not implement the entire design
using normal combinatorial gates but also include non-volatile memory cells
that are programmed after manufacturing. The content of these memory cells
then determine the logic behavior of the chip. For example, this technique
could be combined with DPD-LUT camouflage gates: Instead of using DP-
ROM cells that are programmed based on dopant polarity, other non-volatile
memory cells that are programmed after manufacturing can be used. One
advantage of using non-volatile memory is that this also prevents the factory
from over-producing the ICs. After manufacturing the fabricated chips are
non-functional and hence only the IP owner can program and hence activate
the chips.

Another technique which makes layout level reverse-engineering is the use
of special filler cells [CBCW14]. Typically, in a digital chip there often gaps
between gates due to routing constrains etc. These gabs are usually filled with
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so called “filler cells” to fulfill certain design rules. These filler cells can be easily
identified as non-functional cells during reverse-engineering. The idea is to
instead use cells that look like legitimate gates, i.e., replace the non-functional
filler cells with (non-functional) camouflage gates. Since a reverse-engineer
does cannot easily distinguish these cells from functional camouflage gates,
this can significantly increase the required reverse-engineering effort.

1.2.4 Reverse-engineering camouflage gates

Ideally, camouflage gates make it impossible to reverse-engineer the gates
using visual techniques by optical means. Having a process to determine a
precise doping level and impurity is of outmost importance for the chip pro-
duction and their failure analysis. Special processes are necessary to measure
impurities and dopants. Therefore, the dopant-based and via-based camou-
flage gates do not prevent reverse-engineering in general, but rather hamper
the process. In this section, we briefly discuss several reverse-engineering
techniques that are able to reveal the functionality of the proposed camouflage
gates. Notably these techniques emerged from failure analysis, trying to locate
faults in dopant concentrations, defects, or impurities.

Delayering and Hardware Reverse Engineering: The art of Hardware
Reverse engineering begins at the Printed Circuit Board (PCB) and package
level of the IC piece of hardware. First the IC is cropped out or de-soldered
from the PCB. Please note that this step is non-trivial for some flip-chip
packages with underfill. The challenge to protect the die is becoming ever
more difficult with reduced die size and thickness. Secondly the package has
to be removed by wet-chemical or mechanical means. Hereby, again, the die is
to be protected from any harm which often results in choosing wet-chemical
depackaging, as the die is protected by the seal-layer1 from the front side.
The backside offers enough silicon in the bulk to withstand carefully applied
depackaging processes as well. The bonding wires are of special concern, as
newer copper bondings are, compared to gold bonding wires, hard to preserve.
For the invasive hardware reverse engineering the wires can be neglected once
their connectivity is known or the connectivity can be derived. Advanced
techniques for finding bonding wire connectivity can be done by (3D) X-Ray
or selective packaging delayering with a mill.

Once the die is fully recovered, the die is alternately delayered and digital-
ized by optical means or in a SEM/Focused Ion Beam (FIB). The following
delayering processes are, again, a combination of different wet-chemical and
mechanical polishing. Here it is of outmost importance for the quality of the
process, to handle the equipment in an experienced way. Planarization of the

1 passivation, often SiO2
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current layer with a huge surface to thickness ratio is one, if not the hard-
est challenge to master. Please note knowing your Region of Interest (ROI)
comes very handy at this point, as the planar surface can be reduced sig-
nificantly. The reverse engineer can pinpoint his ROI while neglecting the
rest of the chip [KFP15]. Different metals and glasses have to be investigated
and selectively removed without destroying functional information of the
IC [QCF+16].

Digitalizing and imaging is done in a SEM or FIB derivate in current state-
of-the art reverse engineering. With modern technologies sizes hitting the
diffraction limit of optical microscopes, are more advanced visualizing tools
mandatory. One the one hand this has the drawback of a moderate investment,
but on the other hand can result in smaller images when the color information
from optical images drop out .During the image acquiring a brightness yield
from the metals, to the vias and a brightness difference to the background is
created due to different substance (electrical-)properties. A clear brightness
yield from the SEM/FIB images is beneficial for the post-processing as it
allows to distinguish between vias, wires and Spin-on dielectric (SOD), shown
in figure 1.6.

Fig. 1.6 The brightness allows to distinguish between wires, vias and the SOD. Metal 1
in an older technology is shown. The brighter dots are vias between Metal1 and Metal2.

Post-processing is done in software after every layer has been digitalized
in tile images. The tile images are stitched, vectorized and finally reverse
engineered to get their functional interpretation. This is a very tedious and
repetitive task that can be (semi-)automated to support the reverse engineer.
Different approaches for post-processing are out of scope of this work.

Voltage Contrast: By exploiting the very nature of n-wells and p-wells, a
reverse-engineer can observe a brightness yield from secondary electrons or
ions by using a SEM or FIB [PDH+11]. Particularly, Sugawara et al. [SSF+14]
demonstrate the use of Voltage Contrast (VC) to distinguish the vias connec-
tivity with a clear brightness yield 1.7. Notably, it is not trivial in practice
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to obtain meaningful results from the brightness yield, especially if the ROI
is large (in the worst-case the ROI covers the whole chip). In the event the
layer images raise doubts, a reverse-engineer can enhance the doping contrast
[RP05]. The VC shown in by Sugawara et al. [SSF+14] can be automatically
included during the delayering process with a SEM, which is a state-of-the-art
hardware reverse-engineering equipment due to the shrinking technology size.

Fig. 1.7 Reversing stealthy dopant-level circuits. A brightness yield indicates the possible
dopant regions. Taken from [SSF+14]

Chemical etching and staining Distinguishing the dopant characteristics
is often accompanied by measurement of the dopant concentration. This tech-
nique is commonly employed in failure analysis and quality control processes
of silicon wafer vendors. Based on chemical etch rates or chemical staining,
the dopant area can be distinguished [RP05, pro, Bec98]. For example, the
chemical optimal dash etching exhibits different colors of p-regions and n-
regions, cf. Figure 1.8. An overview of different chemical recipes and practical
approaches is given by Beck [Bec98].

Fig. 1.8 Dash Etching. The right picture shows a CMOS cell with p+ dopant regions,
stained with a blue/green effect depending on the applied etching time and the dopant
concentration. Figure taken from [pro]

It is noteworthy that a major drawback of chemical dash etching is the
optical equipment. This limits the reverse-engineer to large areas, due to the
optical diffraction limit. Particularly, might become a challenge for future
shrinking technology sizes, where the (stealthy) dopant areas shrink with
the cell size. Advanced techniques to measure etchant rates, e.g with a SEM
should be considered.

Scanning Microscopy: In order to detect single point defects or local
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faults covering a few atoms of impurities, mainly two techniques for lateral
doping sensitivity profiling have been established: Scanning Capacitance Mi-
croscopy (SCM) and Scanning Spreading Resistance Microscopy (SRRM).
While SCM is based on capacitance differences in the substrate, SRRM is
derived from the Atomic Force Microscopy (AFM) [Sch06]. As a consequence
of their small-area approaches and the required equipment, they are not
recommended for identification of stealthy dopant areas. They are capable
to do so, but take alot of time. Nevertheless they are listed for the sake of
completeness.

1.3 Netlist-Level Obfuscation

The successful extraction of a chip’s netlist has various implications ranging
from counterfeiting/cloning to technology espionage, cf. Section 1.1. However
in several scenarios, the adversary possesses the netlist in form of hard or soft
IP cores or an untrusted foundry obtains the netlist via the chip’s blueprint.
To counteract IP piracy, several counterfeit avoidance methods such as secure
split test and the use of Physical Unclonable Functions (PUFs) were proposed.
Additionally, watermarking and IP protection schemes are a related strand of
research, however this work focuses on netlist reverse-engineering and netlist
obfuscation.

Adversary Model: Before presenting the details regarding netlist-level
reverse-engineering and obfuscation transformations, we briefly recap the
adversary model in this scenario. We assume that the adversary has access
to the flattened gate-level netlist without any a priori high-level information
such as synthesis options or hierarchy structures. The high-level adversarial
goal can be coarsely defined as information disclosure of how a design works
in detail, in order to leverage further attacks.

1.3.1 Netlist Reverse-Engineering Techniques

In the following we summarize the state-of-the-art in the field of algorithmic
reverse-engineering of gate-level netlists. A discussion of the available tech-
niques is vital in order to analyze the strength of an obfuscation technique.
Furthermore, an overview of all published methods supports the classification
of a reverse-engineering task by means of time.

In 1999, Hansen et al. [HYH99] reported several strategies for a human
reverse-engineer to extract high-level information from the ISCAS-85 bench-
mark suite. The strategies include the identification of common library com-
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ponents such as decoders or adder units and the analysis of repeated modules
such as in data-path circuits. Shi et al. [STGR10] introduced a technique to
algorithmically extract Finite State Machines (FSMs) from a flattened netlist
based on their inherent implementation structure. In particular, FSMs are
detected based on an enable tree as well as strongly connected component
identification approach. This technique is employed in the subsequent work
of Shi et al. [SGR+12], where the netlist (with eliminated FSM) is analyzed
and its functional modules extracted. In 2012, a technique for matching an
unknown subcircuit against abstract library components was introduced by
Li et al. [LWS12]. The technique is based on pattern mining of the simulation
traces as well as model checking. The subsequent work by Li et al. in 2013
[LGS+13] identified word-level structures which provides a more abstract,
high-level view of the design. This work is furthermore taken as a basis for al-
gorithmic component identification such as counters, register files, and adders
etc. [STP+13, STL+14]. A challenging task for functional identification is the
potentially permuted input mapping of the reference circuit and the design
under investigation. Gascón et al. [GSD+14] addressed this problem with a
template-based approach in 2014.

After this brief recap of (semi-)algorithmic reverse-engineering capabilities,
we highlight various obfuscation techniques. Furthermore, we discuss their
advantages and limitations according to the published reverse-engineering
techniques. First, we present control and data flow obfuscation strategies and
secondly reconfiguration-based methods.

1.3.2 Control Flow Obfuscation

A notable challenge from a reverse-engineer’s point of view is to make sense of
the design’s control flow to disclose information how different modules interact
with each other. Control flow obfuscation refers to a set of transformations to
hamper this analysis, particularly by modification of an FSM.

Hardware Metering refers to a conglomeration of tools and security protocols
to enable the design house the post manufacturing control of a produced
device. In particular, this methodology introduced in 2001 allows an unique
way to identify each IC by a passive or active fingerprint [KQ01]. Note that
this strand of research is also related to obfuscation as the identification
circuitry should be hard to reverse-engineer.

Internal active hardware metering can be seen as a form of control flow
obfuscation [AK07]. The original FSM of the design is augmented by several
states, cf. Fig. 1.9. In particular, the initial value of the FSM registers is
determined by the output of a PUF. Only if the correct input sequence (and
thus the correct traversal of the FSM states) is given, the augmented FSM
ends up in the initial state of the original FSM and hence the design operates
correctly. A key feature of this technique is that the number of Flip Flops (FFs)
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influences the number of possible states exponentially and hence provides a
lightweight solution to the issue of an unique IC identifier.

A related technique is combinatorial locking (external active hardware
metering). This technique extends combinatorial logic networks with the
addition of XOR / XNOR nodes [RKM08] or the gate is hidden in reconfig-
urable logic [BTZ10]. Only if the correct key value is applied to the input
of the added nodes, the circuit is equivalent to the original one. However
the claimed security of several subsequent works in this field is challenged
by the recent work of Subramanyan et al. [SRM15]. The proposed attack is
based on satisfiability checking that practically unlocked the vast majority of
allegedly locked designs. A detailed summary and discussion of the diverse
hardware metering techniques is outside of the scope of this work and hence
the interested reader is referred to [Kou12].

A similar FSM-based obfuscation technique to provide anti-piracy features
such as authentication was proposed by Chakraborty et al. in 2008 [CB08].
An FSM is added to the circuitry whose inputs are the primary design inputs
and it has one output. Furthermore this output is XORed with a few selected
nodes of the design. Consequently, the FSM outputs a logical one as long as
the correct input sequence is not applied to the primary input and only for the
correct sequence the FSM transits into the state that outputs a logical zero,
so that the design is equivalent to the unobfuscated one. In a subsequent work
[CB09a], the FSM output is extended by an additional signal that represents
the output of a logical OR of the input variables. Later on the method was
applied to Register Transfer Level (RTL) via synthesis, application of the
obfuscation on netlist-level, and subsequent decompilation to generate the
obfuscated RTL [CB09b].

Limitations: All denoted techniques have the fundamental limitation
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“Normal Mode”
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0start qo
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2
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Fig. 1.9 Example: FSM Obfuscation with preceding State Transition Graph (STG)
based on Fig. 1a in [CB09b]
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that merely the control flow (via the FSM) is obfuscated, but the inherent
circuit structure for subcomponents is preserved (even if gates are appended
to the output of combinatorial subcomponents). Thus, a practical evalua-
tion is vital regarding the influence of the different automatic techniques in
presence of control flow obfuscation. Furthermore, all enumerated techniques
should be evaluated regarding the FSM reverse-engineering technique by Shi
et al. [STGR10]. Particularly, all security analyses do not address the issue
of reverse-engineering from the last state of the obfuscation circuitry that
transits to the original initial state of the design to the best of the authors
knowledge. As the design is somehow locked for an invalid input sequence, an
adversary would search for conditions such as multiplexers or enable signals
where a meaningful output is generated (or at least a larger set of node
influences the primary output), e.g., based on established techniques such
as SAT solvers. Depending on the state transition graph, an inversion may
result in an exponential number of input pattern candidates, however the
complexity should be evaluated practically.

Another fundamental limitation is the structure of the obfuscation circuitry
itself. For example, Chakraborty et al. [CB09a] utilize a special enable signal in
their technique. First, the signal that enables the correct behavior has a large
fan-out cone and its target gates are XOR elements. Second, each node in the
set of selected nodes where an XOR gate is added to the output is chosen by
a metric. Such inherent structures leak information regarding the implementa-
tion and might be identified using methods such as pattern matching or SAT
solvers. Overall, all enumerated techniques should be evaluated regarding the
statements in the limitation as well as the FSM reverse-engineering technique
by Shi et al. [STGR10].

1.3.3 Combined Data and Control Flow Obfuscation

To address the fundamental limitations of control flow obfuscation transfor-
mations, several works combined the FSM-based alteration with data flow
obfuscation to generated malformed output instead of locking the device as
described in the following.

In 2010 Chakraborty et al. [CB10] presented a technique that partially
consists of the prior outlined FSM alteration. Particularly, the authors demon-
strated how the FSM can be interwoven with the design in order to hamper
isolation of the FSM. In addition to the FSM obfuscation, the data flow
is obfuscated through generation of phony output, if the system is not in
a valid state (depending on the primary input sequence). This is realized
by assignment of different arithmetic/logical functions to the output of the
obfuscated module.

A further combined obfuscation transformation was presented by Li et al.
in 2013 [LZ13]. The key element of their methodology is the incorporation of
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the entire design and not only the FSM. Thus, also general circuitry such as
adders or memory circuitry is transformed by the obfuscation. To be more
precise, the obfuscation strategy is based on several methods that moves reg-
isters in sequential circuitry, encodes the circuit with a bijective function that
is applied before and after the register stage, and addition of logic conditions
under that a register value is updated. Sergeichik et al. adapted the concept
of opaque predicates for hardware in 2014 [SI14]. The underlying principle of
opaque predicates is to generate a constant output during runtime in order
to hamper static analyses. Particularly, the authors insert special constant
generating circuitry on the Hardware Description Language (HDL)-level, e.g.,
an Linear Feedback Shift Register (LFSR) where all FF values are zero or a
latch-based circuit.

Limitations: Although the combination of control and data flow obfuscation
definitely increase the reverse-engineer’s efforts, the denoted obfuscation cir-
cuitries are static by nature. If the reverse-engineer makes sense of a structural
obfuscated subcircuit, then this subcircuit will not change its functionality
at some subsequent point in time. Notably, these described obfuscation tech-
niques focus on ASICs and not on field-programmable hardware such as Field
Programmable Gate Arrays (FPGAs). Similar to the control flow obfusca-
tion transformations, the proposed techniques were not evaluated regarding
publicly known algorithmic reverse-engineering approaches, cf. Section 1.3.1.
The decrease of information disclosure by these automatic techniques could
improve the justification for the proposed obfuscation transformations.

1.3.4 Reconfiguration Obfuscation

In order to change the designs appearance during runtime, several works exploit
reconfiguration features to obfuscate a design. Notably, this methodology
requires runtime field-programmable hardware features, however it addresses
the generic limitation of the prior described techniques.

Porter et al. proposed an obfuscation transformation based on dynamic
polymorphic reconfiguration in 2009 [PSK+09]. The underlying principle is
the gate replacement implemented by the dynamic reconfiguration feature of
FPGAs as well as Look-up tables (LUTs). In particular, the different gates
are realized by different configurations of the LUTs. Furthermore, signals
are added to the design in order to hide function signatures. To preserve
the semantic of the obfuscated function, a recovery key is utilized and sub-
sequently added to the output of the reconfigured circuit. In 2013 Gören et
al. extended an FSM-based obfuscation technique (see Section 1.3.2) with
PUFs and a dynamic reconfiguration scheme, in order to provide a low-cost
FPGA bitstream protection [GOY+13]. The FSM state transition depends
several PUF instances that are implemented in distinct partial configuration
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bitstreams reconfigured during runtime. Depending on the stored PUF out-
puts, the design is either locked or unlocked.

Limitations: The reconfiguration features provide a significant advantage
as the adversary has to reverse-engineer has to analyze a reconfigurable part
for each partial design. However, the work by Porter et al. can be simulated
and thus reverse-engineered (certainly with increased efforts). Similarly to
the control-flow based obfuscation, the work by Gören et al. suffers from the
generic limitation that only the FSM is transformed by the obfuscation (and
the rest of the design remains unchanged).

1.4 Conclusion

Hardware obfuscation techniques are demanded by the industry to hamper IP
piracy and technological espionage. Particularly, obfuscation transformation
aim to increase the adversary’s efforts in reverse-engineering a target device or
design. In this chapter, we addressed hardware obfuscation at the layout levels
as well as the netlist level.In terms of layout level obfuscation relatively few
public information is available. While obfuscation is been in use for many years,
how exactly — and how effectively — it is being used is not discussed publicly.
Only very recently were the first scientific paper published in that regard. Most
of these layout level obfuscation techniques are based on the idea to construct
camouflage gates based on changes of the dopant polarity in the active area.
However, several visual reverse-engineering techniques exists that can detect
the dopant polarity in an active area. These techniques require additional
steps and equipment compared to traditional layout reverse-engineering and
hence can make reverse-engineering considerably harder. However, none of the
layout level obfuscation techniques can completely prevent reverse-engineering.
In general, form a research perspective, many unanswered questions remain
in this area. Furthermore, the fact that the companies that specialize on
reverse-engineering do not reveal their techniques to the public, estimating
the cost of reverse-engineering a design with and without layout obfuscation
is currently very difficult.

Several works proposed diverse methods to realize obfuscation transfor-
mations on the netlist level ranging from control flow-based techniques to
reconfiguration-based methods. However, we identified various limitations
for the different approaches especially regarding the security considerations.
The coarse adversary model for obfuscation should be regarded in detail with
respect to the system model and the defensive goal. Particularly, reverse-
engineering of a design in order to disclose IP and patching of a design in
order to eliminate locking features are elementary different goals. Furthermore,
a fundamental issue for the majority of the analyzed works is the omission
of the automatic reverse-engineering techniques, cf. Section 1.3.1. Particu-
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larly, an evaluation of the diverse obfuscation transformations combined with
the reverse-engineering techniques is viable for future research in this area.
Additionally to the obfuscation transformations, the reverse-engineering tech-
niques have to be further explored in order to improve both the obfuscation
transformations as well as the modeling of real-world adversarial capabilities.

Overall, hardware obfuscation provides a powerful set of tools to increase
an adversary’s reverse-engineering efforts. To really understand the level of
obfuscation and security achieved by the different techniques it is also crucial
to understand the capabilities of reverse-engineers. Unfortunately, often the
public knowledge of the state-of-the-art reverse-engineering techniques is
limited since reverse-engineering companies do not publish their methods. In
many cases the real advantage of the different obfuscation technologies are
therefore hard to estimate in practice. In general, there are still more open
then solved research questions in the area of hardware obfuscation.
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