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Abstract—Physical Unclonable Functions (PUFs) have gained
a lot of research attention in recent years resulting in many
different PUF proposals. Several of these proposals were aimed
specifically at FPGA implementations. However, often these PUFs
are evaluated and implemented for different (and often old)
FPGA families with different metrics. Missing implementation
details in many papers further hamper a fair analysis, as small
details such as the exact routing can have significant impact on
the PUF performance. In this paper we aim to overcome these
problems by providing a fair comparison of some of the most
promising Weak PUFs for FPGAs, the classic Ring Oscillator
PUF (RO PUF), the Loop PUF and the TERO PUF. Each PUF
is implemented with the same area optimizations and careful
manual routing for modern Xilinx Artix-7 FPGAs and several
implementation options are discussed. We measure the reliability
and uniqueness of the PUF constructs on 100 BASYS-3 boards
for a temperature range of -22°C to 44°C and use a glitch-
generating core to analyze the vulnerability of the PUF constructs
to surrounding logic. Our results show that the RO PUF has the
best reliability in the presence of temperature variations while
TERO has the best uniqueness of the three considered PUFs.
Interestingly, the TERO PUF also shows the highest resistance
to surrounding logic. To encourage further research in FPGA
PUFs and to enable a fair comparison to future work the
implementations as well as the measurement data will be made
publicly available.

Keywords—Physical Unclonable Function (PUF), Ring Oscilla-
tor PUF, TERO PUF, Loop PUF, Field Programmable Gate Array
(FPGA)

I. INTRODUCTION

Secure key generation and storage are challenging prob-
lems in embedded security applications. In recent years,
Physical Unclonable Functions (PUFs) have gained increasing
attention as a new way to generate and store cryptographic
keys. The most prominent PUF for key generation is the
SRAM PUF [1], [2], which has already been integrated in
high security products such as Micromeni’s Smart Fusion and
NXP’s SmartMX2 chips. However, not every SRAM cell can
be used as a PUF and in most FPGAs the existing SRAM cells
have a deterministic start-up value making them unsuitable for
PUF usage. The most popular PUF used for key generation on
FPGAs is the Ring Oscillator (RO) PUF [3], which is larger
than the SRAM PUF but can be realized efficiently on FPGAs.

The main part of the work was conducted while Alexander Wild and
Georg Becker were with the Horst Görtz Institute for IT-Security at the Ruhr-
Universität Bochum, Germany. A special thanks goes to Bastian Richter as
well as to Hans Müller and Michael Düll for their help with the measurement
framework.

Recently, a new PUF construct called TERO PUF was
introduced which can be implement very efficiently on FPGAs
and seems to have good properties [4]. Similarly, the Loop
PUF is another promising PUF that has been proposed and
can also be implemented on FPGAs [5]. However, a fair
comparison of these PUF constructions has not been performed
yet. So far these PUF constructs have been implemented on
different FPGA technologies under different environmental
conditions and analyzed with different metrics. Furthermore,
the originally proposed Loop PUF is a so-called “Strong PUF”
as opposed to a “Weak PUF”, which means that it has an
exponential challenge space. While this is great for challenge-
and-response protocols, for security reasons this can be prob-
lematic since it leaves the PUF vulnerable to machine learning
attacks and the generated responses are likely correlated. How
problematic it can be to use a Strong PUF for key generation
was for example shown in [6], where a k-sum PUF (a Strong
PUF based on ROs [7]) could be modeled by only using
the helper data generated during key generation. Hence, a
Weak PUF is the more conservative choice for PUF-based key
generation. In this paper we show how the Loop PUF can be
used as a Weak PUF in a way that it cannot be modeled using
machine learning while remaining easy to implement.

The three aforementioned PUFs (RO, TERO and Loop)
are all based on measuring oscillations. There has also been
proposals for PUF constructs on FPGAs that are not based
on counting oscillations but in which two signals “fight”
each others, i.e., on metastable circuits such as the butterfly
PUF [8] or the bistable ring PUF [9]. Another alternative is
an Arbiter PUF like structure in which two signals are directly
compared [10]. In this paper we will concentrate on oscillation
based PUFs. Note that the butterfly PUF and also the bistable
ring PUF can be tricky to implement on FPGAs due to the
requirement of very balanced routing.

The main contribution in this paper is an in-depth and
fair analysis of the three discussed oscillation based PUFs
(RO, TERO and Loop) using a large-scale measurement setup
consisting of 100 modern Xilinx Artix-7 FPGAs (XC7A35T-
1CPG236C) and a precisely controllable climate chamber
(CTS C -40/100). All PUFs are carefully implemented and
area-optimized with the same design goals and techniques,
and the same fair metrics is applied to each PUF construction.
Several new implementation options are discussed as well. Fur-
thermore, the implementation details as well as the measure-
ment data will be made available online to encourage future
research in PUF construction and enable other researchers to



fairly compare their work with ours1.

Fig. 1: Image of our measurement setup consisting of 100
BASYS-3 boards with some custom made controller boards to
individually power one board at a time in our climate chamber
(CTS C -40/100).

II. CONSIDERED PUF CONSTRUCTIONS

The RO PUF [3] is one of the most prominent PUF. It
consists of an asynchronous loop of an odd number of inverters
and an AND gate which controls if the loop oscillates or not.
Due to process variations, an enabled RO will oscillate with
an instance-specific frequency. The frequency of the RO is
indirectly measured by an asynchronous counter enabled for a
certain period of time. The counter values are further processed
to form the PUF response.

The Loop PUF [5] was originally proposed as a Strong
PUF and forms a loop of n delay stages (and if necessary an
additional inverter), which is oscillating similar to the RO PUF.
Each delay stage contains m controllable delay elements. In
each delay element one of two possible paths the signal can
take is selected based on one challenge bit. Each delay stage
i is hence controlled by an m-bit challenge word Cm

i . For
response generation, the frequencies of the loop are measured
for a word-wise rotating challenge Cm

1 , . . . , Cm
n . The response

bits are defined as the sign bits of frequency differences. The
Loop PUF uses the same structures for different challenges,
which obviously makes it vulnerable to, e.g., machine learning
algorithms [6], [11], [12]. In this work we use the Loop PUF as
a Weak PUF construction by ensuring that no entropy is shared
among different responses at the cost of a greatly reduced
challenge space of one challenge per delay stage.

The third PUF considered is the TERO PUF [4]. In the
TERO PUF two inverters are cross-coupled and are brought
into an unstable state via AND gates. While the TERO circuit
tries to resolve the unstable state, the cross-coupled inverters
oscillate for a short time. The number of oscillations is counted
and used for further response generation. Note that the cross-
coupled inverters of a TERO PUF do not need to be perfectly
balanced. Unlike the SRAM-PUF, not the final state decides
the PUF response but instead the response is only the number
of oscillations during the stabilizing process. Hence, for a
TERO PUF it is OK if the circuit always resolves to the same
state as long as the circuit oscillates during the process. This
fact makes the implementation of the TERO PUF considerably
easier on FPGAs, as opposed to, e.g., the Butterfly PUF [8].

1The designs as well as the measurement data will be published at trust-
HUB.org and we encourage other researchers to do likewise. Please also feel
free to contact the authors for the designs and data.

III. RESPONSE GENERATION

The three PUF types mentioned (RO, Loop and TERO)
make use of an asynchronous counter for the output. Fur-
thermore, the counter values need to be post-processed to
generate the actual binary response bits. In this work we use
three different methods. The first is the classical approach
used by the RO PUF proposed in [3], which compares two
counter values, and the response bit is simply the sign of the
counter difference. In the following, this approach is referred
to as 2Comp. If a counter value is used more than once, this
again leads to shared entropy usage that could be exploited by
an attacker [12]. To increase the extracted entropy per PUF
counter value, Yin and Qu proposed to use the exact sorting
of n counter values or frequencies as a way to to maximize
the extracted response entropy without reusing entropy [13].
PUFKY [14] uses this idea paired with Lehmer/Gray encoding
of the ordering to generate the PUF response bits. Since this
is one of the most efficient and popular response generation
schemes proposed for oscillation based PUFs, we also use this
approach in this paper. The first step in PUFKY is the sorting
of the frequencies using Lehmer encoding. It sequentially
checks for n frequencies fi how many frequencies with lower
indices are smaller than the currently selected frequency, i.e.,
si = |{fj |fj < fi ∧ j < i}|. This way a sorting of n elements
can be uniquely represented with n − 1 numbers s2, . . . , sn.
These numbers si are Gray-encoded, which guarantees that
consecutive numbers only differ by one bit, which is very
helpful to decrease the bit unreliability in case the order varies.
Note that based on the encoding, some of the response bits
are biased. The maximum entropy that can be extracted by
sorting a batch of n frequency values is log2(n!). In this paper
we will use a batch size of n = 16 as in PUFKY. After
Lehmer/Gray encoding, 49 response bits are generated from
the 16 frequency values within one batch that have a maximum
entropy of log2(n!) ≈ 44. For more detail, see [14]. The third
approach discussed in this paper is to directly use some counter
bits as the PUF response which was proposed as the default
response generation for the TERO PUF [4].

IV. IMPLEMENTATION AND ANALYSIS

In this section we provide details of our implementations
and give reasons for design decisions. We only implemented
the PUFs and their counters on the FPGA as the focus of
this work are the different PUF primitives and not their post-
processing. All post-processing such as Lehmer/Gray encoding
was therefore performed afterwards in software. Please note
that due to the space limits in this work we are not able to
discuss all implementation details, but therefore the designs
will be publicly available online.

The logic units in an Artix-7 are separated into Config-
urable Logic Blocks (CLBs), each consisting of two slices with
four 6-to-2 LUTs each. The Artix-7 has two different types of
slices, SliceM and SliceL, and two different CLB types, one
consisting only of type L slices and one consisting of L and M
slices. It is important to note that the layout of an M and L slice
is different and that also the layout of some CLBs is different
even if they are of the same type, because the location of the
switch matrix changes. In our implementations we stick with
the same CLB types to generate more PUFs of the same layout
within one design and ensured that only PUFs with identical



layouts are used for the response generation. We also make
use of local routes, which are the routes that are kept within
a CLB.

LUT 6_2

Latch

LUT 6_2

Latch

enable

Fig. 2: Logical layout of the RO PUF implemented in 1/2 slices.

A. Ring Oscillator PUF

The RO PUF is one of the PUF constructions that have been
analyzed and referred to the most. Hence, the RO PUF has
been implemented in several different ways for different FPGA
families. In [15], the most area-efficient RO implementation for
modern Xilinx FPGAs was presented based on the LUT6 2
components provided by Xilinx FPGAs. We therefore based
our implementation of the RO PUF on [15] and also made use
of the LUT6 2 components and transparent latches to build an
efficient RO structure with just local wires on the Artix-7. As
noted in [15], the concept requiring the fewest resources results
in unreliable counter, i.e., for some PUF instances the counter
did not correctly measure the frequency. We observed the same
behavior on the Artix-7 boards when implementing a single
RO using 1/4 slices. We therefore doubled the resources spent
for a RO, as given in Figure 2, to decrease the frequency of
the RO and thereby significantly decrease the observed counter
failures, which in turn resulted in an increased reliability and
uniqueness. For the RO PUF, we instantiated 16 × 80 ROs
in one design2. Only ROs located in the same LUT, slice,
and CLB type should be part of a batch because otherwise
the layouts of the ROs will not be identical and hence the
frequencies will be biased. In our case this means that we
have four different types of ROs, as we always use the same
CLB type and implement one RO in half a slice.

B. Loop PUF

The Loop PUF compares the frequency differences induced
by the delay stages of the loop for different challenges, which
requires a fixed layout for each delay stage. Note that the
internal routing and layout of a delay element does not need
to be identical, i.e., the delay elements are allowed to be
significantly different for their challenge bit. What matters
is that for the same challenge word the layout of different
delay stages is identical. Similarly, the routing between stages
does not need to be identical, which significantly decreases the
implementation complexity of the Loop PUF on an FPGA.

The Artix-7 structure allows for several techniques to
implement these delay elements. One is to use just the LUT
internal wires, which means that the paths within a delay
element only differ inside a LUT as shown in Figure 3a. This
idea was first used in [10] to implement the “Programmable
Delay Lines” of an Arbiter-like PUF construction. We further
call this profile Loop-PDL. Our second approach uses two
different paths built by local routes. Hence one LUT, based on
a challenge bit, routes the input signal to one of these paths
and a second LUT is used to combine both paths again to yield

2We chose 16 × 80 as this is the magnitude of PUF responses needed to
generate a 128-bit secret key with a secure fuzzy extractor as proposed in [14].

a single data signal. This profile is depicted in Figure 3b and
will be referred to as Loop-Wire. The LUTs of an Artix-7 are
followed by a latch. In case of Loop-Wire (and Loop-PDL),
the latches are not used. Including a latch into the signal path
increases the variance of the signal propagation delay since
the transistors of the latch are also affected by manufacturer
process variations. Hence, we built a third profile called Loop-
Latch depicted in Figure 3c, by pushing the signal through
transparent latches. The routes used to build a delay element
in Loop-Wire and Loop-Latch are just local routes and we
fixed these for all PUF instances. Loop-Latch and Loop-Wire
consume the same resources on the slice level, i.e., 1/2 slices,
while Loop-PDL is instantiated in 1/4 slices.

In a second step the delay elements have to be combined
to a loop. To build an area-efficient design, the requirement
of layout-equivalent delay stages and the FPGA structure
basically allow for two approaches. First, a big loop with
stages of different delay element types is built (this again is
due to the layout of the CLB and slices within the Artix-7).
We followed that strategy and built a big loop of 16 stages
with 4 delay elements (with different layouts) per stage (i.e.,
m = 4 and n = 16). We also built smaller loops consisting of
only 16 stages and 1 delay element (i.e., m = 1 and n = 16).
To use the full resources available in a CLB, four loops are
placed in an interleaved manner, each with a different delay
stage layout. The interleaved approach of shorter loops resulted
in considerably better reliability while meeting the same area
requirements. Hence, we chose this interleaved method for our
three final designs, each consisting of 80 loops with 16 stages
each.

C. TERO PUF

A TERO PUF instance is based on two AND gates and
two inverters. Similar to the previous PUF implementations,
we made use of the LUT6 2 component to minimize the area,
included the latch to increase the variance and used only local
routes to almost balance the wire capacitances of a TERO
instance. The schematic of a TERO instance can be found in
Figure 4. Note that our design is considerably smaller than
the design by Marchand et al. [16], which is actually 8 times
larger. The large resource number provided by Bossuet et al.
[4] also indicates that our design is smaller than their design3.

Since TERO forms a very small loop that oscillates just
for a short time with decreasing peak to peak values, we fixed
the first counter stage next to a block of four TERO instances
to minimize the wire capacitances of this counter stage and
hence ensure a high precision of the recognized signal edges.

V. COMPARISON OF THE PUF CONSTRUCTS

In this section we are going to compare the different PUF
types with respect to their unreliability and uniqueness. It is
important to note that the way the responses are generated
strongly influences the unreliability and uniqueness values. In
this analysis we opted to use the Lehmer/Gray encoding as
described in Section III for response generation to compare
all three PUF types. For this we sorted the responses in 80

3Unfortunately a more accurate area comparison with [4] is not possible
as only area of the entire PUF circuitry including counters and averaging is
provided for a very different FPGA (Altera Cyclon II).
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Fig. 4: Schematic implementation of TERO in 1/2 slices.

batches, each consisting of 16 responses from identical PUFs
(i.e., with the same routing and slice types) located next to
each other. Then Lehmer/Gray encoding was applied to each of
these batches to generate 80×49 response bits. To compute the
unreliability, each PUF instance was measured under nominal
temperature (22°C) as a reference value and again for different
temperatures. The unreliability in this work is simply given
as bit unreliability, which is defined as the mean Hamming
distance in percent per bit between the different measurements
of the same PUF instance. To compute the uniqueness, the
average Hamming distance of the responses between each
of the 100 different PUF instances (i.e., FPGA boards) was
computed.

A. Reliability

The first important aspect that needs to be addressed
when different counter-based PUF constructions are compared
is the run time of the PUFs. This aspect is unfortunately
often neglected in PUF papers but, as we will see, very
important. The oscillation frequency is basically determined
by the implementation, which is a constant for all instances,
the instance-dependent process variations, environmental noise
(e.g., due to temperature or supply voltage differences) and
random temporal noise (e.g., temporal fluctuations in the power
supply). The latter type of noise is not constant and can
be averaged out by repeatedly measuring the PUFs’ entropy
source. This is well known and averaging (also called temporal
majority voting) has been widely used as a means to increase
reliability [17]. For the RO and Loop PUF, increasing the
evaluation time essentially increments the number of times
the entropy source is evaluated and hence decreases temporal
noise. Therefore increasing the evaluation time can be seen as
averaging or temporal majority voting.

Similar to the RO and Loop PUFs, averaging can greatly
increase the reliability of the TERO PUF. However, since a
TERO PUF only oscillates for a short period in time before
ending up in a stable state, averaging was not done by
increasing the run time, but by repeatedly evaluating the TERO
PUF. In [4], a total of 218 PUF evaluations were averaged to
generate the response. However, the run time of the TERO
PUF also affects reliability. Most of the TERO circuits settle
in a stable state after a short time and ideally the run time
should be chosen in such a way that all TERO PUF circuits
have settled. But some of the circuits are very balanced so that

they keep oscillating for quite a long time. Setting the run time
to the maximum oscillating time would drastically increase
the run time of the PUF while only marginally increasing the
reliability. We performed a reliability experiment on TERO
by providing increasing time for settling while averaging 212

PUF evaluations. We determined that for our implementation
a settle time of 25 clock cycles (at 100MHz) results in a good
time-reliability ratio. Hence, in our setup 212 PUF evaluations
required a runtime of 25 · 212 = 217 clock cycles.
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Fig. 5: In (a) the average uniqueness for a 49-bit Lehmer/Gray
word is shown for the three PUF constructs with different run
times. For an ideal PUF, this uniqueness should be 23.11,
which the TERO PUF achieves even with a run time of
25 clock cycles. In (b) the average unreliability of the PUF
construct for Lehmer/Gray words in % per bit is shown for
different run times.

We performed an experiment in which we changed the
run time from 25 up to 220 clock cycles (320 ns to 10.49ms)
and plotted the resulting uniqueness and reliability values in
Figure 5. As one can see in Figure 5a, the TERO PUF has
near-optimal uniqueness from the very beginning. The RO
PUF on the other hand has a lower uniqueness for short run
times. This is due to the simple fact that if the run time is
too short, the frequency of the RO cannot be measured with
sufficient accuracy. The intensity of this phenomenon is greatly
increased for the Loop PUF. The frequency of the Loop PUF
is considerably smaller than the frequency of the RO PUF and
hence it takes many more clock cycles until the frequency can
be determined with high enough precision. Hence, to get a
good uniqueness (above 22.90), at least 216 clock cycles are
required for the Loop PUF, compared to 25 for the TERO
and 28 for the RO PUF. In general, the uniqueness values
of the RO and Loop PUF never completely reach that of the
TERO PUF in our experiments. The uniqueness of the RO PUF
always remains between 22.98-23.00 after 29 clock cycles and
Loop PUF achieves a maximum of 22.99 while TERO always
achieves the ideal 23.11-23.12. Note that a difference of 0.11
can be quite significant as can be observed in the bias analysis
in the next section.

Figure 5b shows the unreliability of the PUF constructs for
different run times. For the RO and Loop PUFs, the unreliabil-



ity first increases up to a certain point before decreasing again.
This is due to the fact that a low uniqueness usually results
in a high reliability and hence when the uniqueness increases,
the unreliability also increases at first. Once a high uniqueness
is reached, the averaging effect of the run time dominates, the
noise decreases and the unreliability decreases as well. The
figures also show that the RO construction shows the lowest
unreliability of the three designs for longer run times. TERO
on the other hand has a lower unreliability for short run times
of up to about 211 clock cycles. The Loop PUF depicts the
worst reliability results in this analysis. But it is extremely
interesting to see that in general the unreliability of the Loop
PUF is very high while the temperature seems to hardly have
any impact in comparison.

For further analysis we fixed the run time to 217 clock
cycles (1.31ms) per measurement since longer run times
resulted just in slight decreases in unreliability for each PUF
construction and the uniqueness of all PUF types reached their
maximum value. We measured our PUF constructs for the fixed
run time at different temperatures (-22°C, 0°C, 22°C, 44°C) to
get a better understanding of the different PUFs’ stability in
the presence of temperature changes. The nominal temperature
is defined as 22°C and each measurement is compared with the
nominal results4. The values given in Table I are the mean bit
unreliability values in % per bit for the noted temperatures. As
one can see, the RO PUF produces the most reliable results.
Surprisingly, the Loop PUF is the most unreliable but at the
same time also the most temperature-independent design. This
phenomenon will be discussed in greater detail in Section V-C.

TABLE I: Unreliability of the PUF constructions for
Lehmer/Gray encoding and 2Comp for different temperatures
in % per bit.

PUF class Bit unreliability (Lehmer/Gray) [%] Bit unreliability (2Comp) [%]
-22°C 0°C 22°C 44°C Glitch on -22°C 0°C 22°C 44°C Glitch on

RO 7.30 4.64 3.23 4.63 22.32 3.57 2.09 1.41 2.05 4.57

TERO 12.78 8.71 5.98 8.89 11.55 5.80 3.73 2.48 3.82 5.18

Loop-Latch 12.91 11.74 11.61 12.37 36.19 5.92 5.07 4.93 5.24 14.69

Loop-Wire 20.49 19.58 16.01 20.12 43.16 12.07 11.41 7.65 11.81 25.46

Loop-PDL 16.02 15.62 16.21 16.75 36.33 7.00 6.90 7.04 7.26 17.22

B. Uniqueness

Other than reliability, uniqueness is the most important
property of a Weak PUF as it indicates the entropy of the
generated responses. Figure 5a suggests that all PUF designs
achieve an equally near-perfect uniqueness. In this section we
therefore would like to examine the uniqueness of the PUFs
in more detail. As mentioned, for the Lehmer/Gray encoding
the PUF responses are sorted into 80 batches {f1, . . . , f16}
each of size 16. Ideally, the probability that fi is larger than
fj should be 0.5 for all i, j ∈ {1, . . . , 16}. This probability
P (fi > fj) is depicted on the left side in Figure 6. We call the
derivation of this probability “bias”. It is basically the same as
the bias if one computed the PUF responses by comparing two
PUF responses (noted in Section III as 2Comp). We computed
this bias for every i and j for each PUF construction with

4We performed two independent measurements at 22°C to be able to
determine the temporal noise at the nominal temperature

mean(|0.5 − P (fi > fj)|) over all 100 FPGAs. Hence, the
maximum bias can be 50%. As one can see in Table II and
Figure 6, the TERO PUF has nearly no bias. In comparison to
this, the RO PUF clearly shows a much larger bias that depends
on the position of the PUFs. Since all 16 PUFs of one batch
are located in a row, the larger the difference between i and j,
the further away they are located on the FPGA. This directly
results in a higher bias which is inline with earlier findings that
showed that the frequency of an RO depends on its location
on the FPGA [15], [18]. The Loop PUF shows the strongest
bias of the three PUFs, as can be seen in Figure 6e.
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Fig. 6: The bias analysis for glitch off and on.

One problem with PUFs on FPGAs is that the surrounding
logic can influence the PUF behavior. This is especially prob-
lematic for PUF IP cores since they need to be re-evaluated
based on the design they are integrated into. In order to test
the vulnerability of the PUFs to surrounding logic, we repeated
the experiment proposed in [15], in which a so-called “glitch
core” generating a large amount of switching activity is placed
in the top right corner of the FPGA. On the left side of
Figure 6 this glitch core is inactive while on the right side
it is active during PUF evaluation. As can be seen, this glitch
core drastically increases the bias in the RO and Loop PUF and
hence decreases the entropy. In comparison, the uniqueness of
the TERO PUF seems not to be influenced by the glitch core.
It should be noted though that the switching activity of the
glitch core is extreme and should be considered as a worst-
case scenario. To give the reader an intuition of the amount
of switching activity of the core, when the BASYS-3 board is



TABLE II: Uniqueness and bias of the tested PUF constructions at nominal temperature.

Glitch off Glitch on
PUF class Mean Uniqueness Mean Bias Max Bias Mean Bias/2Comp Mean Uniqueness Mean Bias Max Bias Mean Bias/2Comp

Lehmer/Gray (Batch) (Batch) (Neighbors) Lehmer/Gray (Batch) (Batch) (Neighbors)
bits (from 49) % % % bits (from 49) % % %

RO 22.97 3.08 9.24 1.37 22.2 13.2 31.6 3.6

TERO 23.11 0.48 1.63 0.43 23.12 0.6 1.7 0.4

Loop-Latch 22.98 4.10 11.31 1.97 18.01 27.2 47.2 8.9

Loop-Wire 22.42 8.26 21.1 7.5 14.83 34.4 49.8 12.7

Loop-PDL 23.05 5.4 17.7 1.8 20.68 15.6 36.8 6.5

powered via an USB cable the increased power consumption
of the glitch core can actually cause the FPGA board to turn
off.

Table II summarizes the uniqueness results with an active
and inactive glitch core. Out of the three PUF constructions
examined, the TERO PUF showed the best uniqueness proper-
ties. Especially in the presence of the glitch core (see Fig. 6)
its results were considerably better than those of RO and
Loop PUFs. The results also show that looking only at the
uniqueness after Lehmer/Gray encoding might suggest a much
higher entropy than what actually exists in the PUF (compare
Figure 6 and Table II). One reason for this is the encoding into
blocks of 49 bits. To precisely measure the uniqueness and
entropy of these batches, a much larger number of batches
is required than the 80 × 100 we used in our experiment.
How to determine the actual entropy within a sample size in
the magnitude of our measurement setup is a very interesting
and open research problem since our setup of 100 FPGAs is
actually one of the largest in the community.

C. Analysis of the Loop PUF

Typically, environmental noise has a large impact on the
reliability of a PUF, in particular noise due to temperature
variations. However, as can be seen in Table I and Figure 5b,
the Loop PUF has a very large temporal random noise while
it is not affected much by temperature variations. The reason
why the Loop PUF has such a large temporal noise is its
architecture. Basically, for response generation, the Loop PUF
compares the frequencies fi and fj . The loop configurations
of the measured frequencies differ just in stage i and stage j.

Hence, by comparing two frequencies measured under
the same environmental conditions, the environmental noise
within all stages that are not i or j and the environmental
noise independent from a challenge bit cancel each other
out. Furthermore, the process variation induced differences
also cancel each other out. Hence, the frequency differences
contains (i) the challenge-dependent process variations within
stages i and j, (ii) the environmental noise within stages i
and j, and (iii) the temporal random noise for all parts of the
Loop PUF. Compared to the RO PUF, in which all parts of
the RO have process variations that add uniqueness as well as
environmental noise, in a Loop PUF only a small part of the
loop adds uniqueness and suffers from environmental noise,
while every part of the loop contributes to temporal noise. This
explains why the reliability of the Loop PUF is much smaller
than that of the RO PUF due to the magnitudes larger temporal
random noise in comparison to the PUF’s uniqueness. This

effect is amplified for larger loops, which provides a reason
for the decreased reliability of our m = 16 and n = 4 Loop
PUF profile.

We considered different designs for the Loop PUF to
identify entropy-rich components on the FPGA. Hence, we
compared the reliability and uniqueness of Loop-Latch, Loop-
Wire and Loop-PDL. Table II indicates that the mean unique-
ness values of the designs are quite similar. But looking at
the maximum and mean bias, one can see that the Loop-
Latch performs best, with the Loop-Wire performing worst.
Similarly, the Loop-Latch is clearly the most reliable while
Loop-Wire is the most unreliable of the three PUF profiles.
Interestingly, for nominal temperature the reliability of Loop-
Wire and Loop-PDL are similar, but Loop-Wire is much more
vulnerable to temperature changes. Note that in Loop-Latch
the local routing is very similar to Loop-Wire. Hence, one can
summarize that in this experiment the routing has negative
impact on the PUFs as their temperature variations are larger
than the introduced process variations. Furthermore, the latches
seem to have a large amount of process variations and they
greatly increase the uniqueness as well as the reliability of the
Loop PUF. Hence, at least for the Artix-7, including latches
into a PUF design (like we also did in the RO and TERO PUF)
is very advisable.

D. Other response generation schemes

In this paper we focused on the Lehmer/Gray encoding
scheme for response generation as it is the most efficient
scheme and, e.g., used in [14]. However, in the original TERO
PUF publication it was proposed to directly use two counter
bits as the response, which is also fairly efficient. We also
computed the uniqueness and reliability for the TERO PUF
when the counter bits are used as a response. The result
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Fig. 7: Uniqueness and unreliability when using the counter
bit directly as a response for each bit.



of this analysis can be seen in Figure 7a for the TERO
PUF. Counter bit 19 achieves a uniqueness of 0.46 per bit,
which is similar to Lehmer/Gray encoding (23.11/49 = 0.47).
However, the unreliability of 10.4% − 17.6% for counter
bit 19 is already considerably higher than what occurs with
Lehmer/Gray encoding or if two PUFs are compared to each
other. Hence, response generation based on comparing counter
values seems to be the more efficient approach for TERO. We
also repeated this analysis for the RO PUF and the results can
be seen in Figure 7b. The high temperature dependency of the
RO frequency makes this type of response generation worse.
Some counter bits even flip with a probability of over 80%
when the temperature is changed.

VI. CONCLUSION

In this paper we compared three oscillation based Weak
PUF architectures in detail using a large test setup with
100 FPGAs. A fair comparison was achieved by carefully
implementing the PUFs on the same platform with the same
optimization goals and implementation tricks. Our optimized
designs will be made publicly available together with the raw
data of our experiments to facilitate further PUF research. The
results from the analysis section can be summarized as follows:

• RO PUF: Leading in reliability, decent uniqueness,
influenced strongly by surrounding logic

• TERO PUF: Best uniqueness, exceptional resistance
to surrounding logic, decent reliability, best in terms
of runtime

• LOOP PUF: Worst PUF overall, decent uniqueness
for large runtimes, very unreliable especially due to
temporal noise, influenced very strongly by surround-
ing logic

The fact that the TERO PUF seems to be hardly impacted
by surrounding logic is especially interesting as this potentially
makes integrating the TERO PUF into a larger design consid-
erably easier than integrating a RO PUF. The Loop PUF on
the other hand is the clear looser of this analysis. Our analysis
also brought up some points that are important when fairly
comparing FPGA PUFs which we would like to highlight:

• Importance of runtime: The runtime of oscillation
based PUFs is crucial in a fair comparison as it has
a similar effect as averaging to increase reliability.
Runtime can also have strong impact on uniqueness.

• Source of entropy: Including latches into PUF ele-
ments seems to have a very positive effect on unique-
ness and reliability while adding wires can actually
have a negative effect. Designers should keep in mind
that the entropy source of a FPGA PUF is not limited
to the LUTs but all FPGA elements.

• Uniqueness metric The uniqueness metric can be
quite misleading for larger PUF response strings and
computing individual bit biases can help in that regard.
In general, how to fairly evaluate the uniqueness of
PUFs is a very interesting open research question

In conclusion, one can say that both the TERO PUF and
RO PUF are very interesting PUF primitives on FPGAs with

different advantages and disadvantages. While the RO PUF
has been explored many times before, our paper shows that
the TERO PUF is a very viable alternative. In that regard,
it is important to point out that our results show that using
a response generation scheme such as PUFKY originally
developed for RO PUFs can also be used in conjunction with a
TERO PUF. This can lead to better results than directly using
counter bits as the PUF response for the TERO PUF.
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