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Abstract

In this paper, we introduce an extension to the LIBOR Market model that is suitable to in-

corporate both sudden market shocks as well as changes in the overall economic climate

into the interest rate dynamics. This is achieved by substituting the simple diffusion process

of the original LIBOR Market model by a regime-switching jump diffusion. We demonstrate

that the new Markov-switching jump diffusion (MSJD) LIBOR Market model can be em-

bedded into a generalized regime-switching Heath-Jarrow-Morton (HJM) model and prove

that the considered market is arbitrage-free. We derive pricing formulas for caps, floors,

and interest rate swaps using Fourier pricing techniques and show how the model can be

calibrated to real data.
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1. Introduction

1. Introduction

In 1997, the log-normal LIBOR Market Model (LMM) revolutionized the modeling of interest rates,

as the new approach based on the consideration of simple rather than instantaneous forward rates

finally allowed for closed-form pricing formulae for the most commonly traded interest rate products.

Since its introduction by Brace et al. (1997) and Miltersen et al. (1997), the LMM has experienced an

unprecedented raise in popularity and has become the most popular pricing approach among practition-

ers. Unfortunately, however, it has turned out that the assumption of simple forward rates following

log-normal dynamics is not sufficient to account for complicated market movements or non-flat implied

volatility surfaces (see, Rebonato (2002)). As a consequence, a large amount of extensions has been

brought forth over the course of years and, among others, the simple log-normal processes of the

original model were replaced by displaced diffusions (see Joshi and Rebonato (2003)), Lévy processes

(see Eberlein and Özkan (2005)), generalized jump diffusions (see Glasserman and Kou (2003) and

Belomestny and Schoenmakers (2011)), Markov-switching geometric Brownian motions (see Elliott

and Valchev (2004)), processes with stochastic volatility (see Andersen and Brotherton-Ratcliffe (2005)

and Belomestny et al. (2010)) and general semimartingales (see Jamshidian (1999)). Even extensions

accounting for default risk were introduced (see Eberlein et al. (2006) and Eberlein and Grbac (2011)).

The purpose of this paper is to introduce an extension to the log-normal LMM that successfully merges

two of the most promising concepts: generalized jump diffusions and Markov-switching processes.

In the following, the approach shall be referred to as the Markov-Switching Jump Diffusion (MSJD)

extension to the LMM. Through this model, it is possible to both incorporate sudden market shocks as

well as changes in the overall economic climate, or structural breaks, into the interest rate dynamics.

On the one hand it has been demonstrated by Belomestny and Schoenmakers (2011) that modeling

simple interest rates through jump diffusions is not only suited to reflect sudden jumps observed in

the market dynamics, but also allows to successfully capture the non-flat implied volatility surfaces

typically observed in the interest rate derivatives markets. On the other hand, Rebonato and Joshi (2002)

and Rebonato (2003) present considerable evidence indicating that there are in fact different economic

phases. This observation is incorporated into the model by the Markov-switching feature: All jump

diffusion parameters are assumed to be dependent on an underlying finite-state space Markov chain
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1. Introduction

moving according to the overall economic development.

By exploiting the relation between bond prices, forward rates, and simple rates, we demonstrate that

such an extension to the original model can be embedded into a generalized Markov-switching Heath-

Jarrow-Morton model and hereby prove that the considered market is arbitrage-free. We furthermore

show how interest rate swaps and their derivatives can be related to the model. With measure changes

playing a central role in the derivation of the model, we investigate the consequences of these changes

on all modeled entities as well as the underlying Markov chain. Despite the apparent complexity of our

approach, we demonstrate that the pricing and calibration within a Markov-switching jump diffusion

model for interest rates is nonetheless possible and yields satisfactory results. Using the Fourier pricing

technique, we derive pricing formula and calibrate the model to real market data.1

This paper is divided into six sections. Section 2 is meant to recall the most relevant concepts when

working with the LIBOR market model – jump diffusion processes, Girsanov’s Theorem and the Change-

of-Numéraire Technique. Next, Section 3 gives a quick introduction to the log-normal LIBOR market

model of Brace et al. (1997) and Miltersen et al. (1997) as well as the swap market model of Jamshidian

(1997). This is followed by Section 4, where we rigorously derive an arbitrage-free framework for

the MSJD extension to the original model. It is shown how the dynamics of different LIBOR rates

can be interrelated and the special role of the Markov chain under measure changes is investigated.

Section 5 demonstrates how the modeling of swap dynamics can be embedded into the MSJD extension

of the LMM. Then, Section 6 investigates how some of the most important categories of interest rate

derivatives, caps/floors and swaptions, can be priced within the MSJD framework. Last, but not least,

Section 7 explains how the interest rate dynamics of the proposed extension can be successfully calibrated

to market data.

1The modeling of LIBOR rates within a Markov-switching jump diffusion framework is also considered in Steinrücke et al.
(2013). The main difference between the considerations presented there and this paper is that the former gives an intuitive
introduction to Markov-switching jump diffusions, whereas this paper presents the mathematically rigorous framework
behind the intuition. Also, swap rates and swaption pricing are not considered in Steinrücke et al. (2013), and calibration
issues are only touched upon.
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2. Mathematical Preliminaries

2. Mathematical Preliminaries

Let the finite time horizon T ∗ > 0 be given. The interest rate market is modeled on the complete stochas-

tic basis (Ω,F ,F,P), where the filtration F on F satisfies the usual conditions of right-continuity and

completeness, and P denotes the physical measure of the market. It is furthermore assumed that the

market is frictionless with bank account (Bt)t∈[0,T ∗], B0 = 1, and zero-coupon bonds (B (t, T ))t∈[0,T ]

trading for every maturity 0 ≤ T ≤ T ∗. Also, the ad-hoc assumption is made that all processes involved

are specified in such a way that all operations to be performed (differentiation in the T -variable, differen-

tiation in the t-variable under the integral sign and interchange of order of integration) are well-defined.

Note that due to the assumption of a finite time horizon, any local martingale can be treated as though

being a martingale (see Björk et al. (1997)).

2.1. Jump Di�usion Processes

Stochastic calculus for jump diffusion processes is essential to the development of the upcoming Markov-

switching jump diffusion (MSJD) extension to the LIBOR market model. This subsection is intended

to give a short introduction to the most important notions needed in this context. To this end, let H be

an arbitrary probability measure equivalent to P, both defined on
(
R
k,B

(
R
k
))

. Furthermore, let µ be

an integer-valued random measure on the mark space
(
[0, T ∗]×Rk,B ([0, T ∗])⊗ B

(
R
k
))

and νH its

compensator measure with respect toH. For all random functions

γ ∈
{
g : Ω× [0, T ∗]×Rk → R

n; g predictable ,∫ t

0

∫
Rk

min
(
g2 (s, z) , |g (s, z) |

)
νH (ds, dz) <∞ a.s.

}
,

the stochastic integral

∫ t

0

∫
Rk

γ (s, z)
(
µ− νH

)
(ds, dz)

defines a unique, purely discontinuous (local) martingale (see, e.g., Jacod and Shiryaev (2002)). For

WH a d-dimensional standard Brownian motion underH and δ : Ω× [0, T ∗]→ R
n×d a random process

satisfying
∫ t
0 ‖δ (s)‖2 ds <∞, the stochastic integral

∫ t
0 δ (s) dWH (s) is a continuous (local) martingale
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(see, e.g., Klenke (2008), Theorem 25.18). If additionally, α : Ω× [0, T ∗]→ R
n is a predictable process

satisfying
∫ t
0 ‖α (s)‖ ds <∞, then the process

Y (t) =

∫ t

0
α (s) ds+

∫ t

0
δ (s)′ dWH (s) +

∫ t

0

∫
Rk

γ (s, z)
(
µ− νH

)
(ds, dz)(2.1)

defines a special semimartingale which is almost surely finite for all t ∈ [0, T ∗]. The adaption of Itō’s

Lemma for semimartingales of type (2.1) reads as follows (compare, e.g., Øksendal and Sulem (2007)):

Theorem 2.1 (Itō’s Lemma for Special Semimartingales of Type (2.1)).

Let f be a C1,2
(

[0, T ∗]×Rn,R
)
-function and Y = (Y1, . . . , Yn) be an n-dimensional semimartingale

given as in (2.1). Then (f (t, Y (t)))t∈[0,T ∗] is a semimartingale as well, and satisfies

df (t, Y (t)) =
∂f (t, Y (t))

∂t
dt+

n∑
i=1

∂f (t, Y (t))

∂Yi

(
αi (t) dt+ δi (t)′ dWH (t)

)
+

1

2

n∑
i,j=1

∂2f (t, Y (t))

∂Yi∂Yj

(
δ (t) δ (t)′

)
i,j
dt

+

∫
Rk

[f (t, Y (t−) + γ (t, z))− f (t, Y (t−))]
(
µ− νH

)
(dt, dz)

+

∫
Rk

[
f (t, Y (t−) + γ (t, z))− f (t, Y (t−))

−
n∑
i=1

γi (t, z)
∂f (t, Y (t−))

∂Yi

]
νH (dt, dz) .

An important application of Itō’s Lemma lies in the context of stochastic exponentials: For a given

one-dimensional semimartingale Y , one would like to find a càdlàg adapted process Z which solves the

stochastic differential equation (SDE)

dZ (t) = Z (t−) dY (t) , Z (0) = z0.(2.2)

In the case, where Y is given as in (2.1), (2.2) reads

dZ (t) = Z (t−)

[
α (t) dt+ δ (t)′ dWH (t) +

∫
Rk

γ (t, z)
(
µ− νH

)
(dt, dz)

]
, Z (0) = z0.(2.3)

The solution to the general problem (2.2) is called the stochastic exponential or Doléans-Dade exponen-
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tial and is usually denoted by E (Y ) = (Et (Y ))t≥0 (see, e.g., Theorem 13.5 in Elliott (1982)). In the

special case (2.3), it is most frequently referred to as a jump diffusion. It can be shown that the solution

exists and is unique (following V, Theorem 6 Protter (2005)). Under application of Itō’s Lemma 2.1, one

may furthermore derive the solution to (2.3) to be given as

Z (t) = z0 · exp
(∫ t

0

(
α (s)− 1

2
‖δ (s)‖2

)
ds+

∫ t

0
δ (s)′ dWH (s)(2.4)

+

∫ t

0

∫
Rk

ln (1 + γ (s, z))
(
µ− νH

)
(ds, dz)

+

∫ t

0

∫
Rk

[
ln (1 + γ (s, z))− γ (s, z)

]
νH (ds, dz)

)
,

As (2.3) may be rewritten as

dZ (t) =Z (t−)α (t) dt+ Z (t−) δ (t) dWH (t)(2.5)

+

∫
Rk

Z (t−) γ (t, z)
(
µ− νH

)
(dt, dz) , Z (0) = z0,

with Z (t−)α (t), Z (t−) δ (t) and Z (t−) γ (t, z) again predictable, integrable processes, (2.5) may be

read as a special semimartingale of type (2.1). Consequently, Itō’s Lemma 2.1 may be correspondingly

applied by replacing the coefficient functions in (2.1) by Z (t−)α (t), Z (t−) δ (t) and Z (t−) γ (t, z).

2.2. The Change-of-Numéraire Technique and Girsanov's Theorem

Pricing in the interest rate market involves changes to measures associated with numéraires different than

the simple bank account B. For this, the Change-of-Numéraire Technique is needed (see, e.g., Brigo and

Mercurio (2006) or Zagst (2001)):

Theorem 2.2 (Change-of-Numéraire Technique).

Let (Y (t))t∈[0,T ∗] be a primary traded asset of the market and Q an equivalent martingale measure

(EMM) under which
(
B−1t Y (t)

)
t∈[0,T ∗]

follows a martingale. Let A = (A (t))t∈[0,T ∗] and E =

(E (t))t∈[0,T ∗] be two arbitrary numéraires, satisfying that the discounted processes
(
B−1t A (t)

)
t∈[0,T ∗]

and
(
B−1t E (t)

)
t∈[0,T ∗]

are both Q-martingales. Then, the following holds:
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• There exists an equivalent probability measure QA,

dQA

dQ

∣∣∣∣
Ft

:=
A (t)

A (0)Bt
, t ∈ [0, T ∗] ,

such that
(
A(t)−1Y (t)

)
t∈[0,T ∗]

is a QA-martingale.

• The Radon-Nikodým derivative of QE with respect to QA is given as

dQE

dQA

∣∣∣∣
Ft

:=
E (t)

A (t)
· A (0)

E (0)
, ∀ t ∈ [0, T ∗] .

• For any contingent claim D = D (T ) with underlying Y , the time-t-price is given as

BtEQ

[
D

BT

∣∣∣∣Ft] = A (t)EQA

[
D

A (T )

∣∣∣∣Ft] = E (t)EQE

[
D

E (T )

∣∣∣∣Ft] .
The numéraires used in the context of the LMM are (zero-coupon) bonds (B (t, T ))t∈[0,T ] with maturities

0 < T ≤ T ∗, for which it is natural to assume that B (t, T ) > 0. The measure QT associated with the

numéraire (B (t, T ))t∈[0,T ] is called the T -forward measure. As all relevant processes in the upcoming

model will be jump diffusions of the type (2.3), the following version of Girsanov’s theorem comes in

handy (see Schönbucher (2003)). Note that measure changes have no impact on the jump measure, but

only on the respective compensator νH:

Theorem 2.3 (Girsanov’s Theorem).

Let (Ω,F ,F,H) be a complete stochastic basis with H an arbitrary probability measure. Furthermore,

let WH (t) be a d-dimensionalH-Brownian motion and µ an integer-valued random measure with mark

space ([0, T ∗]× E,B ([0, T ∗])⊗ E) and H-compensator νH (dt, dz) = λH (t) kH (t, dz) dt. λH and

kH denote the predictable jump intensity and the marker distribution, respectively, and it is assumed

that kH (t, A) is predictable ∀ A ∈ E . Also, let θ be a d-dimensional predictable process and Φ (t, z) a

nonnegative predictable function satisfying the usual integrability assumptions. Define the process Z (t)

by Z (0) = 1 and

dZ (t)

Z (t−)
= θ (t) dWH (t) +

∫
E

(Φ (t, z)− 1)
(
µ (dz, dt)− νH (dz, dt)

)
.
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It is assumed that EH [Z(t)] = 1 for all 0 ≤ t ≤ T . Define the equivalent measure R ∼ H by the

Radon-Nikodým derivative dR/dH|Ft = Z (t). Then, the following holds:

(i) The process WR is aR-Brownian motion,

dWR (t) = dWH (t)− θ (t) dt.

(ii) The a.s. unique predictableR-compensator of µ is given as

νR (dz, dt) := Φ (t, z) νH (dz, dt) .

The corresponding jump intensity and the marker distribution are

λR (t) = φ (t)λH (t) and kR (t, dz) = ZE (z) kH (t, dz) ,

respectively, where φ (t) :=
∫
E Φ (t, z) kH (t, dz), and ZE (z) := Φ (t, z) /φ (t) for φ (t) > 0,

ZE (z) = 1 otherwise.

3. The Log-Normal LIBOR Market Model and the Embedding of

Swaption Pricing

While there has been a wide range of extensions to the instantaneous forward rate model of Heath et al.

(1992), the approach bears the intrinsic problem of dealing with an infinite number of interest rates

that are not directly observable on the interest market. Even more severe, the most basic interest rate

derivatives (caps and swaptions) cannot be evaluated via a closed-form pricing formula. It was mainly

these problems that gave rise to a new modeling approach – the LIBOR market model as introduced by

Brace et al. (1997) and Miltersen et al. (1997). In contrast to before, the authors proposed to concentrate

on simple instead of instantaneous forward rates. Jamshidian (1997) soon after applied the underlying

idea to modeling in the swap market. The following two subsections are meant to give a short overview

on their models. More detailed introductions to the topic can be found in Brigo and Mercurio (2006),

Filipovic (2009), Rebonato (2002) and Zagst (2001).
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3. The Log-Normal LMM and the Embedding of Swaption Pricing

3.1. The Log-Normal LIBOR Market Model (LMM)

Let 0 = T0 < T1 < . . . < TN be a fixed tenor structure, with constant tenor δ ≡ Ti+1 − Ti, i =

1, . . . , N − 1. The forward LIBOR rate or simple forward rate Li (t) := L (t, Ti, Ti+1) with maturity Ti

and expiry Ti+1 is the simple interest rate that an investor can lock in at time t for the future time interval

[Ti, Ti+1], and is given by the relation

1 + δ · Li (t) =
B (t, Ti)

B (t, Ti+1)
.(3.1)

This is indeed the simple forward rate, as one can easily construct a portfolio that allows for replication

(see, e.g., Shreve (2008), p. 423, 424). Taking the expiry of one LIBOR rate as the maturity of the next

yields an array of N − 1 LIBOR rates, L1, . . . , LN−1.2

In the most basic setting of the LMM, as it was considered in the seminal paper of Brace et al. (1997),

it is assumed that the only source of randomness in the market is a d-dimensional standard Brownian

motion. The market filtration F is the augmented and completed version of the filtration generated by it.

Observing that the LIBOR market model can naturally be embedded into the HJM model, Brace et al.

(1997) showed that the model can be assumed to be free of arbitrage and that there exists a spot martin-

gale measure Q, under which all bonds discounted with the money market account B are martingales.

Following from this, each LIBOR rate Li can be demonstrated to follow a martingale under the forward

measure Qi+1 associated with the bond price (B (t, Ti+1))t∈[0,T ] acting as numéraire. As a result, the

martingale representation theorem for Brownian markets (see, e.g., Zagst (2001), p. 31) implies that each

forward LIBOR rate Li can be modeled as a geometric Brownian motion with drift 0 under the respective

forward measure Qi+1,

dLi (t) = Li (t) · σi (t)′ dW i+1 (t) , Li (0) = li,(3.2)

where W i+1 is a d-dimensional Qi+1-Brownian motion, σi a predictable d-dimensional vector function

satisfying
∫ Ti
0 ‖σi (s)‖2 ds < ∞ Qi+1-a.s. and li is determined according to (3.1) evaluated at 0. As in

2Most authors substitute the accurate term “forward LIBOR rate” for Li (t) = L (t, Ti, Ti+1) by the more convenient short-
ened expression “LIBOR rate”. Strictly speaking, this is only appropriate when t = Ti, but since no great confusion should
be expected, we will also follow this convention.

9



3. The Log-Normal LMM and the Embedding of Swaption Pricing

(2.4), the solution to the SDE (3.2) is then given by the stochastic exponential

Li (t) = li · exp

(∫ t

0
σi (s)′ dW i+1 (s)− 1

2

∫ t

0
‖σi (s)‖2 ds

)
.

Given the exponential form, the i-th LIBOR rate is non-negative, whenever Li (0) ≥ 0. This can be

ensured by an initial term structure of the zero-coupon bonds B (0, Ti), i = 1, . . . , N which is positive

and non-increasing in maturity, 0 < B (0, TN ) ≤ . . . ≤ B (0, T1).

3.2. The Log-Normal Swap Market Model (LSM)

The swap market model naturally builds upon the LMM. For a set of pre-specified, successive dates

Tα, Tα+1, . . . , Tβ ∈ {T1, . . . , TN}, 1 ≤ α < β ≤ N , a payer interest rate swap (PIRS) is a contract

that involves receiving floating for fixed-leg payments: Let the notional of the contract equal 1. With K

being a fixed annualized interest rate, the owner of the contract makes a payment δK at every instant

Ti+1 ∈ {Tα+1, . . . , Tβ}, while receiving a corresponding floating payment δLi (Ti) at each of these

time points. In contrast, a receiver interest rate swap (RIRS) entails receiving fixed for floating payment.

The interest rates of the floating leg reset at dates Tα, Tα+1, . . . , Tβ−1, while they are being paid at

Tα+1, . . . , Tβ , respectively. By risk-neutral valuation, the change of numéraire technique 2.2 and the

martingale property of Li, it is easy to see that the value PFSt of a PIRS contract at time t is

PFSt =

β−1∑
i=α

B (t, Ti+1) δ
(
EQi+1

[
Li (Ti)

∣∣Ft]−K) =

β−1∑
i=α

B (t, Ti+1) δ [Li (t)−K]

=

β−1∑
i=α

(B (t, Ti)− (1 + δK)B (t, Ti+1)) ,

where definition (3.1) was used to rewrite the expression in the second line. The price of a RIRS can be

determined accordingly. The forward swap rate Sα,β (t) is then defined as the fixed rate that makes the

value of the swap at time t equal to zero,

Sα,β (t) :=

∑β−1
i=α B (t, Ti)−B (t, Ti+1)

δ
∑β−1

i=α B (t, Ti+1)
=
B (t, Tα)−B (t, Tβ)

δ
∑β−1

i=α B (t, Ti+1)
.(3.3)

Using a similar argument to the one used to derive the martingale property of LIBOR rates under their
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3. The Log-Normal LMM and the Embedding of Swaption Pricing

corresponding forward measures, Jamshidian (1997) demonstrated that Sα,β is a martingale with respect

to the so-called swap measure Qα,β associated with the numéraire

Cα,β (t) = δ

β−1∑
i=α

B (t, Ti+1) ,(3.4)

the so-called annuity. By same reasoning as in the LIBOR case, swap rates may hence be assumed to

follow dynamics

dSα,β (t) = Sα,β (t)σα,β (t) dWα,β (t) ,(3.5)

with Wα,β denoting aQα,β Wiener process and σα,β a strictly positive, deterministic function satisfying∫ Tα
0 ‖σα,β (s)‖2 ds <∞Qα,β-a.s. The initial value of Sα,β is given through (3.3) evaluated at 0.

3.3. Pricing of Caps/Floors and Swaptions

An important implication of the development of the market model approach was that it finally allowed for

the closed-form evaluation of caps/floors and swaptions in terms of a Black (1976)-type formula. Recall

that an interest rate caplet (floorlet) is an instrument that protects its owner against too high (low) interest

rates. For notional 1, the owner of a caplet (floorlet) on the i-th LIBOR rate Li receives a payment at

time Ti+1 that equals the amount in which δ · Li (Ti) exceeds (falls below) the pre-specified strike δK,

such that the payoff of the contract equals

δ · (Li (Ti)−K)+
[
δ · (K − Li (Ti))

+ ] .
Since a change in sign is the only difference between the payoff of the instruments “caplet” and “floorlet”,

it suffices to concentrate on the former. By the usual principle of risk-neutral valuation and the Change-

of-Numéraire Technique 2.2 it can be easily shown that the time-t price of a caplet on the i-th LIBOR

rate with strike K is given by

Capleti (t) = δ ·B (t, Ti+1) ·EQi+1

[
(Li (Ti)−K)+

∣∣Ft]
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3. The Log-Normal LMM and the Embedding of Swaption Pricing

Under specification (3.2), a Black-Scholes-type argument (see Schoenmakers (2005)) yields

Capleti (t) = δ ·B (t, Ti+1) ·
[
Li (t) · N

(
d̃1
)
−K · N

(
d̃2
)]
,(3.6)

where N denotes the cumulative distribution function of the standard normal distribution and

d̃1,2 =
ln
(
Li(t)
K

)
± 1

2

∫ Ti
t ‖σi (s)‖2 ds√∫ Ti

t ‖σi (s)‖2 ds
.(3.7)

An interest rate cap (floor) is a strip of caplets over a set of time periods [Ti, Ti+1], T0 < T1 . . . < TN ,

where at the end of each period the buyer of the contract receives a payment, whenever the interest rate

fixed at the beginning of each period exceeds (falls below) the pre-specified strike price K. A cap is

basically a series of caplets with the same underlying strike K, and hence, the time-t price equals

Cap (t) =
∑

i=1,...,n−1;Ti≥t
Capleti (t) .

The second main class of derivatives in interest rate markets are swaptions, where these instrument are –

as the name indicates – options on underlying interest rate swaps: A European payer (receiver) swaption

with strike K is a contract that gives the buyer the right to enter into a payer (receiver) swap with fixed

rate K at the future time point Tα. The first reset time is Tα, and the payments start at Tα+1, going until

Tβ . In a similar argument to the pricing of caplets, the time-t-price of a payer forward swaption is given

as

PSwaptionα,β (t) = Cα,β (t)
[
Sα,β (t) · N

(
d̂1
)
−KN

(
d̂2
)]

,(3.8)

where N denotes the cumulative distribution function of the standard normal distribution and

d̂1,2 =
ln
(
Sα,β(t)
K

)
± 1

2

∫ Tα
t ‖σα,β (s)‖2 ds√∫ Tα

t ‖σα,β (s)‖2 ds
.

Note at this point that the market models LMM and LSM are not compatible with each other. This means

that while LIBOR rates follow martingales with respect to their corresponding forward measure, swap

12
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rates do not, and vice versa (see, e.g., Brigo and Mercurio (2006), Section 6.8). As a consequence, prac-

titioners oftentimes decide to model the LIBOR rates according to (3.2) and price caplets (and floorlets)

according to the analytical evaluation formula (3.6), whereas swap rates are suitably approximated and

then used to derive approximate swaption prices (compare also Section 5).

4. The Markov-Switching Jump Di�usion (MSJD) Extension of

the LMM

Figure 1: ATM implied volatilities (in %) for 6m1y, 6m10y, 2y2y, 5y2y and 5y5y swaptions with quar-
terly occurring reset dates.

When examining the evolvement of cap and swaption prices over time, there are several indicators that

simple log-normal dynamics for LIBOR and swap rates might not be suited to adequately reproduce the

evolvement of LIBOR rates over time. Figure 1 depicts, e.g., the evolvement of the implied volatilities of

four different swaptions with start and maturity dates between 6 months and 10 years in the time interval

2003/01/01-2012/06/22. Even to the mere eye, it appears obvious that swaption prices are more volatile

during certain times than they are during others. Furthermore, a log-normal model as in (3.5) seems to

only offer very limiting explanatory power, when it comes to the jumps observed in Figure 1, as large

displacement are very unlikely to occur under normally distributed increments. Very similar observations

can be made for time series of caplet volatilities. These apparent shortcomings in the log-normal market

models motivate the following proposed extension to the log-normal LMM, where the diffusion processes

in (3.2) are substituted by so-called Markov-switching jump diffusions. As the name indicates, these

processes are jump diffusions whose coefficient functions as well as compensator measures are driven by

the movement of some underlying finite-state continuous Markov chain representing the overall market

13
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movement. We shall call this model the Markov-switching jump diffusion (MSJD) extension to the

log-normal LIBOR market model. Observe in the following that, in the special case that the jump part

equals 0 and the Markov chain only takes on one state, the MSJD extension coincides with the original

log-normal LMM.

4.1. Presenting the Extended Framework

Let the bond structure be positive and non-increasing in the maturity. As before, we assume the existence

of a bank account (Bt)t∈[0,T ∗] and a risk-neutral measure Q with respect to which all discounted bonds

(B(t, T )/Bt)t∈[0,T ], 0 < T ≤ T ∗, follow martingales. In extension to the original log-normal LMM,

let X be a continuous, time-homogeneous, finite Markov chain, taking values in the standard basis

E = {e1, . . . , eM} of the Euclidean space RM . The infinitesimal generator of X with respect to the

terminal measureQN associated with (B (t, TN ))t∈[0,TN ] is denoted byA, FX is the filtration generated

by X . It can be shown that X has the semimartingale representation,

Xt = X0 +

∫ t

0
A′Xsds+Mt(4.1)

where M = (Mt)t≥0 is a right-continuous, square-integrable RM -valued martingale with respect to(
P,FX

)
(compare, e.g., Elliott et al. (1994)). Also, let µ be a random jump measure defined on the

mark space [0, T ∗]×Rk, which is taken to be of finite activity i.e. µ
(
[0, t]×Rk

)
<∞ for all t ∈ [0, T ∗].

In extension to (3.1), we propose to model each LIBOR rate Li, i = 1, . . . , N−1, as a Markov-switching

jump diffusion, such that every Li is governed by the SDE

dLi (t)

Li (t−)
= σi (t,Xt−)′ dW i+1 (t) +

∫
Rk

ψi (t,Xt−, z)
(
µ− νi+1

Xt−

)
(dt, dz) ,(4.2)

with W i+1 a d-dimensional Brownian motion and νi+1
Xt−

the predictable Qi+1-compensator of µ. σi

denotes the regime-dependent volatility and ψi the regime-dependent jump function associated with

the jump term. The objects involved (i.e., processes, measures and compensators) are to satisfy the

subsequent assumptions:

(I) X is the only source of randomness for the volatilities and jump functions. For all i ∈

14



4. The Markov-Switching Jump Diffusion (MSJD) Extension of the LMM

{1, . . . , N − 1}, these are defined as

σi (t) = σi (t,Xt−) =

M∑
j=1

〈
Xt−, ej

〉
σi (t, ej) , t ∈ [0, Ti] ,

ψi (t, z) = ψi (t,Xt−, z) =
M∑
j=1

〈
Xt−, ej

〉
ψi (t, ej , z) , t ∈ [0, Ti]

with 〈., .〉 denoting the usual scalar product, and volatilities and jump func-

tions satisfying
∑M

j=1

∫ Ti
0 ‖σi (s, ej)‖2 ds < ∞, for i = 1, . . . , N − 1 and∑M

j=1

∫ Ti
0

∫
Rk
|ψi (s, j, z)| νi+1

j (ds, dz) < ∞, for i = 1, . . . , N − 1. For t > Ti, we set

σi (t,Xt−) ≡ 0 and ψi (t,Xt−, z) ≡ 0, for all i = 1, . . . , N − 1.

(II) Conditional on the Markov chainX , theQN -Wiener processWN and theQN -compensated jump

measure µ− νNXt− are independent.

(III) TheQN -compensator νN (dt, dz) of µ is the predictable compensator associated with a homoge-

neous Markov-switching marked Poisson process,

νNXt− (dt, dz) = kN (Xt−, dz)λ
N (Xt−) dt =

M∑
j=1

〈
Xt−, ej

〉
kN (ej , dz)λ

N (ej) dt

with λN (ej) being the jump intensity and kN (ej , dz) the conditional distribution of the markers

in state ej .

The rationale behind requirements (II) and (III) will become evident in Subsection 4.3. For requirement

(I), observe that volatilities, jump functions and compensators are dependent on Xt− rather than on Xt

which ensures the predictability of the coefficient function. In combination with the requirement that

µ is integer-valued, (4.2) hence defines a special semimartingale of the type (2.3). The solution to the

stochastic differential equation in (4.2) is accordingly given by the Doléans-Dade exponential

Li(t) = Li(0) · exp
(
− 1

2

∫ t

0
‖σi(s,Xs−)‖2 ds+

∫ t

0
σi(s,Xs−)′dW i+1(s)

+

∫ t

0

∫
Rk

ln (1 + ψi (s,Xs−, z))
(
µ− νi+1

Xs−

)
(ds, dz)

+

∫ t

0

∫
Rk

[ln (1 + ψi (s,Xs−, z))− ψi (s,Xs−, z)] ν
i+1
Xs−

(ds, dz)
)
.
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It is worthwhile noting that, similar to the log-normal model, the exponential form ensures non-negativity

for each LIBOR rate Li, whenever Li (0) ≥ 0, 1 ≤ i ≤ N − 1. As we postulated that the initial term

structure of the zero-coupon bonds is positive and non-increasing, this is always ensured.

4.2. Ensuring an Arbitrage-Free Environment

The first important issue to be considered is the question if the MSJD-extension to the LMM is free of

arbitrage possibilities. This is indeed the case, as the following proposition demonstrates. We prove

that no-arbitrage holds by showing that the MSJD-extension to the LMM can be embedded into the

generalized HJM framework of Björk et al. (1997), for which no-arbitrage conditions are known.3 We

partly follow a construction similar to Eberlein and Özkan (2005), before completing the proof in the

spirit of Brace et al. (1997). Absence of arbitrage then follows from the no-arbitrage condition in the

instantaneous forward rate model.

We consider a slightly modified version of the generalized HJM model of Björk et al. (1997) and Björk

et al. (1997). In a Markov-switching version of their model, it is assumed that for a given measure Q,

the dynamics of the instantaneous forward rates follow

df (t, T ) = α∗ (t,Xt−, T ) dt+ ς∗ (t,Xt−, T ) dWQ (t)(4.3)

+

∫
Rd

γ∗ (t,Xt−, T, z) [µ− νQXt− ] (dt, dz) , ∀ t ≤ T,

whereWQ is aQ-Brownian motion and νQXt− (dt, dz) the predictableQ-compensator of µ. Furthermore,

it is assumed that νQXt− (dt, dz) = KQ (t,Xt−, dz) dt, with KQ (t,Xt−, A) dt predictable for all A ∈

E . The functions α∗, ς∗ and γ∗ are assumed to be deterministic conditional on Xt− and satisfy all

necessary integrability conditions as postulated in Björk et al. (1997). By comparing the dynamics of the

instantaneous forward rates with those of the bond prices, Björk et al. (1997) show thatQ is a martingale

3Observe that, given the presence of a state price density, the existence of an arbitrage-free framework where all LIBOR rates
have dynamics according to (4.2) follows immediately from the general construction for semimartingales in Jamshidian
(1999). However, given the complexity of his proofs, one may also follow a different type of proof that allows for a
thorough introduction and understanding of the model.
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measure if and only if the no-arbitrage condition

αi (t,Xt−) = −1

2
‖ςi (t,Xt−)‖2(4.4)

−
∫
Rk

(
eγi(t,Xt−,z) − 1− γi (t,Xt−, z)

)
KQ (t,Xt−, dz) ,

holds, where

αi (t,Xt−) := −
∫ Ti

t
α∗ (t,Xt−, u) du, ςi (t,Xt−) := −

∫ Ti

t
ς∗ (t,Xt−, u) du,(4.5)

γi (t,Xt−, z) := −
∫ Ti

t
γ∗ (t,Xt−, u, z) du.

In order to prove that the LIBOR market model can indeed be embedded in the extended HJM model,

the particular relationship between instantaneous and simple forward rates is exploited,

Li(t) =
1

δ

[
B (t, Ti)

B(t, Ti+1)
− 1

]
=

1

δ

[
exp

(∫ Ti+1

Ti

f(t, s)ds

)
− 1

]
.(4.6)

Even though the calculations are occasionally cumbersome, the use of the no-arbitrage condition (4.4),

property (4.6) and measure changes then eventually yields the following proposition:

Proposition 4.1 (Embedding the MSJD LMM Model into the Regime-Switching HJM-Model).

1. Based on (4.3), the Q–dynamics of Li, i = 1, . . . , N − 1, follow the dynamics

δ

1 + δLi (t−)
·dLi (t)

= (ςi+1 (t,Xt−)− ςi (t,Xt−))′ ςi+1 (t,Xt−) dt

+

∫
Rk

(
eγi(t,Xt−,z)−γi+1(t,Xt−,z) − 1 + eγi+1(t,Xt−,z) − eγi(t,Xt−,z)

)
νQXt− (dt, dx)

+ (ςi (t,Xt−)− ςi+1 (t,Xt−))′ dWQ (t)

+

∫
Rk

(
eγi(t,Xt−,z)−γi+1(t,Xt−,z) − 1

) (
µ− νQXt−

)
(dt, dz) .(4.7)
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2. The Qi+1–dynamics of Li are given as

δ

1 + δLi (t−)
· dLi (t) = (ςi (t,Xt−)− ςi+1 (t,Xt−))′ dW i+1 (t)(4.8)

+

∫
Rk

(
eγi(t,Xt−,z)−γi+1(t,Xt−,z) − 1

) (
µ− νi+1

Xt−

)
(dt, dz) .

3. The Qi+1–dynamics of Li take the form

dLi (t)

Li (t−)
= σi (t,Xt−)′ dW i+1 (t) +

∫
Rk

ψi (t,Xt−, z)
(
µ− νi+1

Xt−

)
(dt, dz) ,(4.9)

with W i+1 a Qi+1-Brownian motion, νi+1 the Qi+1-compensator of µ and σi and ψi appropriately

defined.

Proof. The proof is based on a three-step procedure. Details are elaborated in Appendix A.

4.3. The Measure Changes and their Consequences

In a next step, we consider how the dynamics of LIBOR rates with different maturities can be interrelated.

This is in particular important for the pricing of interest rate products, as these oftentimes depend not

only on one, but rather multiple LIBOR rates of different maturities. In the following, the consequences

of measure changes for the Wiener processes and the compensators as well as the Markov chain and its

generator are investigated.

Consequences of Measure Changes on Wiener Process and Compensator Measure

The Radon-Nikodým derivative ηi+2,i+1 (t) associated with a measure change from Qi+2 to Qi+1 is

given as

ηi+2,i+1 (t) :=
dQi+1

dQi+2

∣∣∣∣
Ft

=
B (0, Ti+2)

B (0, Ti+1)
· B (t, Ti+1)

B (t, Ti+2)
=
B (0, Ti+2)

B (0, Ti+1)
· [1 + δLi+1 (t)]

18
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and, following from (4.2), has dynamics

dηi+2,i+1 (t) = ηi+2,i+1 (t−)
δLi+1 (t−)

1 + δLi+1 (t−)
(4.10)

×
[
σi+1 (t,Xt−)′ dW i+2 (t) +

∫
Rk

ψi+1 (t,Xt−, z)
(
µ− νi+2

Xt−

)
(dt, dz)

]

for i = N −2, . . . , 1. Making use of Girsanov’s Theorem 2.3, it follows iteratively that theQi+1-Wiener

process W i+1 and the Qi+1-compensator νi+1
Xt−

of µ may be written with respect to their counterparts

under the terminal measure QN as

W i+1 (t) = −
∫ t

0

N−1∑
j=i+1

δLj (s−)

1 + δLj (s−)
σj (s,Xs−) dt+WN (t) ,(4.11)

νi+1
Xt−

(dt, dz) =

N−1∏
j=i+1

(
1 +

δLj (t−)ψj (t,Xt−, z)

1 + δLj (t−)

)
νNXt− (dt, dz) .(4.12)

Observe that Girsanov’s Theorem 2.3 even allows to make a statement about how jump intensity and the

distribution of the markers change. Inserting (4.11) and (4.12) into (4.2), the dynamics of each LIBOR

rate Li, i = 1, . . . ,M can be expressed in terms of QN ,

dLi (t)

Li (t−)
=−

N−1∑
j=i+1

δLj (t−)

1 + δLj (t−)
σi (t,Xt−)′ σj (t,Xt−) dt+ σi (t,Xt−)′ dWN (t)(4.13)

−
∫
Rk

ψi (t,Xt−, z)
( N−1∏
j=i+1

(
1 +

δLj (t−)

1 + Lj (t−)
· ψj (t,Xt−, z)

)
− 1
)
νNXt− (dt, dz)

+

∫
Rk

ψi (t,Xt−, z)
(
µ− νNXt−

)
(dt, dz) ,

with WN being a QN Brownian motion and νNXt− the QN -compensator of µ.

Equations (4.11) and (4.12) may now be used to justify the rather strict requirements (II) and (III):

Remark 4.2 (Measure Changes and Model Assumptions (II) and (III)).

Assumption (II) can indeed only be specified for the terminal measure QN as this feature cannot be

transferred from the terminal measure to any other forward measure Q2,. . . ,QN−1. This is due to the

fact that both W i+1 (t) and νi+1
Xt−

in (4.11) and (4.12) contain terms Li+1, . . . , LN−1, which in turn
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contain integral terms involving WN and νNXt− .

A similar problem arises for Requirement (III), where the terminal compensator νNXt− was defined to be

the compensator of a time-homogeneous Markov switching measure associated with a marked Poisson

process, with Markov-switching jump intensity λN (Xt−) and marker distribution kN (Xt−, dz). This

means, that conditional on the state of the Markov chain, the compensator is deterministic. Observing

(4.12), this property is also not preserved under the measure change to any other measure Qi+1, i =

1, . . . , N − 2, due to the factors δLi/ (1 + δLi), j = i+ 1, . . . , N .

Both points mentioned turn out to be particular inconvenient when it comes to pricing of caps/caplets

and swaptions in Section 6. The problem can, however, be circumvented by approximating (4.11) and

(4.12) via freezing the Lj’s at 0, as proposed by Belomestny and Schoenmakers (2011). Then,

dW i+1 (t) ≈ dW̃ i+1 (t) =

N−1∑
j=i+1

δLj (0)

1 + δLj (0)
σj (t,Xt−) dt+ dWN (t) ,(4.14)

νi+1
Xt−

(dt, dz) ≈ ν̃i+1
Xt−

(dt, dz) :=

N−1∏
j=i+1

(
1 +

δLj (0)ψj (t,Xt−, z)

1 + δLj (0)

)
νNXt− (dt, dz) ,(4.15)

the ν̃i+1
Xt−

is state-dependent deterministic and the independence between compensator and Wiener pro-

cess is preserved.

The Consequences of Measure Changes on the Markov Chain

It is yet to be checked how measure changes influences the Markov chain. So far, we have used the

simple, no-index notationA for the infinitesimal generator ofX . The following proposition demonstrates

that this is in fact a sensible notation, as the infinitesimal generator is not affected by changes between

forward measures:

Proposition 4.3 (Markov Chain under the Measure Change). The measure change from Qi+1 to Qi has

no influence on the infinitesimal generator of the Markov chain X .

Proof. For the purpose of clarity, we writeAi as the infinitesimal generator ofX underQi. By definition

of the infinitesimal generator under the Ti-forward measure Qi,

Aif (x) = lim
t↓0

E
Qi [f (Xt)|X0 = x]− f (x)

t
=: lim

t↓0

E
Qi
x [f (Xt)]− f (x)

t
(4.16)
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for any bounded, Borel-measurable function f , for which this limit exists. Accordingly, Ai+1 is the

infinitesimal generator of X with respect to Qi+1. We rewrite (4.16) as

Aif (x) = lim
t↓0

E
Qi
x [f (Xt)]−EQ

i+1

x [f (Xt)] +EQ
i+1

x [f (Xt)]− f (x)

t
(4.17)

= lim
t↓0

[
E
Qi
x [f (Xt)]−EQ

i+1

x [f (Xt)]

t

]
︸ ︷︷ ︸

Ri(Xt)

+Ai+1f (x) .

In order to show that the measure change does not have any influence on the infinitesimal generator, it

suffices to show that Ri (Xt) = 0. Using the Radon-Nikodým derivative ηi+1,i (t) := dQi/dQi+1|Ft ,

we may write Ri (Xt) in terms of the Qi+1-expectation:

Ri (Xt) = lim
t↓0

E
Qi+1

x

[
dQi
dQi+1

∣∣
Ft · f (Xt)

]
−EQi+1

x [f (Xt)]

t
= lim

t↓0

E
Qi+1

x

[
(ηi+1,i (t)− 1) f (Xt)

]
t

.

The tower property for expectations yields, conditional on Xt,

Ri (Xt) = lim
t↓0

E
Qi+1

x

[
f (Xt)E

Qi+1

x

[
(ηi+1,i (t)− 1)

∣∣Xt

]]
t

,

using that f (Xt) is, naturally, measurable with respect to Xt. The solution to (4.10) is by the Doléans-

Dade exponential given according to expression (2.4),

ηi+1,i(t) = exp
(
− 1

2

∫ t

0

∥∥∥ δLi (s−)

1 + δLi (s−)
σi (s,Xs−)

∥∥∥2ds(4.18)

+

∫ t

0

δLi (s−)

1 + δLi (s−)
σi (s,Xs−)′ dW i+1 (s)

+

∫ t

0

∫
Rd

ln

(
1 +

δLi (s−)

1 + δLi (s−)
ψi (s,Xs−, z)

)(
µ− νi+1

Xt−

)
(ds, dz)

+

∫ t

0

∫
Rd

[
ln

(
1 +

δLi (s−)

1 + δLi (s−)
ψi (s,Xs−, z)

)
− δLi (s−)

1 + δLi (s−)
ψi (s,Xs−, z)

]
νi+1
Xt−

(ds, dz)
)
.

In particular, ηi+1,i(t) is of exponential integral form and for all possible values of the finite state space

Markov chain X at t, EQ
i+1

x

[
(ηi+1,i (t)− 1)

∣∣Xt = j
]

= 0, as ηi+1,i (t) is a Qi+1-martingale with
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starting value ηi+1,i (0) = 1. Consequently,

Ri (Xt) = lim
t↓0

E
Qi+1

x

[
f (Xt) · 0

]
t

= 0.(4.19)

Inserting (4.19) into (4.17) yields Ai = Ai+1 and the proposition is proved.

Remark 4.4 (The Infinitesimal Generator and the Change from Q to Qi+1).

The same statement about the invariability of the generator of the Markov chain is true when changing

from the spot martingale measure Q to Qi+1. As in the previous proposition, this follows from the

exponential integral-type representation of dQi+1/dQ|Ft , similar to (4.18).

5. Embedding the Swap Dynamics into the LMM Extension

As it was mentioned in Section 3.3, there are two possible ways of how swaptions can be evaluated.

Either, swap rates are modeled as martingale processes under the corresponding swap measure and then

swaptions are priced analytically with the Black (1976)-type formula (3.8), or the swap dynamics are

suitably embedded into the LMM and swaption prices are derived based on appropriate approximations.

As the former case can be done completely analogous to Section 4, it shall not be considered here.

Instead, we concentrate on the second case.

5.1. Changing to the Swap Measure Qα,β

The first step is to examine how measure changes from the terminal measure QN (or any other forward

measure) to the swap measure Qα,β affect Wiener processes and compensator measures:

Theorem 5.1 (Measure Change from QN to Qα,β).

Wiener processes WN and Wα,β and compensator measures νNXt− and να,βXt−
under the corresponding
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measures QN and Qα,β can be related via

dWα,β (t) = dWN (t)−
β−1∑
i=α

zi+1,α,β (t)
N−1∑
j=i+1

δLj (t−)

1 + δLj (t−)
σj (t,Xt) dt,

να,βXt−
(dt, dz) =

[( β−1∑
i=α

zi+1,α,β (t)
( N−1∏
j=i+1

[
1 +

δLj (t−)ψj (t,Xt−, z)

1 + δLj (t−)

]
− 1
))

+ 1

]
× νNXt− (dt, dz) ,

where zi+1,α,β (t) := δB (t, Ti+1) /Cα,β (t).

Proof. For the proof, see Appendix B.

The intensities and jump distribution furthermore relate as follows:

λα,β (t,Xt−) = λN (t,Xt−)

∫
Rk

[( β−1∑
i=α

zi+1,α,β (t)

×
( N−1∏
j=i+1

(
1 +

δLj (t−)ψj (t,Xt−, z)

1 + δLj (t−)

)
− 1
))

+ 1

]
kN (Xt−, dz) ,(5.1)

kα,β (Xt−, dz) = kN (Xt−, dz)

×

[(∑β−1
i=α zi+1,α,β (t)

(∏N−1
j=i+1

(
1 +

δLj(t−)ψj(t,Xt−,z)
1+δLj(t−)

)
− 1
))

+ 1

]
∫
Rk

[(∑β−1
i=α zi+1,α,β (t)

(∏N−1
j=i+1

(
1 +

δLj(t−)ψj(t,Xt−,z)
1+δLj(t−)

)
− 1
))

+ 1

]
kN (Xt−, dz)

.(5.2)

5.2. Approximative Swap Dynamics

Following Rebonato (2002), one possibility of how swap rate dynamics could be approximated is to

rewrite (3.3) as

Sα,β (t) = wα (t)Lα (t) + . . .+ wβ−1 (t)Lβ−1 (t) ,

where the “weights” wj (t) , j = α, . . . , β − 1 are defined as wj (t) = δ · B (t, Tj+1) /Cα,β (t). One

23



5. Embedding the Swap Dynamics into the LMM Extension

could then freeze the weights at t = 0, such that

Sα,β (t) ≈
β−1∑
i=α

wi (0)Li (t) .(5.3)

Differentiation on both sides would then yield an approximation of the swap dynamics. This is obviously

a rather crude approximation, and we walk along a different path. Instead of first freezing the weights and

then applying Itō’s formula to (5.3), we follow the idea initially proposed by Andersen and Andreasen

(2000) to first derive and then freeze any weights. Andersen and Brotherton-Ratcliffe (2005) apply this

idea to a stochastic volatility environment without jumps, but the approach is just as applicable to the

MSJD case. The idea yields the following proposition, where the swap rate dynamics are expressed in a

combination of terms involving bond prices, the annuity and the coefficient functions in the LIBOR rate

dynamics:

Proposition 5.2 (Swap Rate Dynamics).

Using the LIBOR rate coefficient functions, the swap rate dynamics take the form

dSα,β (t)

Sα,β (t−)
=

β−1∑
j=α

xj (t)σj (t,Xt−)′ dWα,β (t) +

∫
Rk

ψα,β (t,Xt−, z)
(
µ− να,βXt−

)
(dt, dz) ,(5.4)

where

xj (t) =
δLj (t−)

1 + δLj (t)

 B (t, Tβ)

B (t, Tα)−B (t, Tβ)
+

1

Cα,β (t)
· δ

β−1∑
k=j

B (t, Tk+1)

 , and

ψα,β
(
t,Xt−, z

)
=

1

Sα,β (t−)

1−
∏β−1
i=α

1
1+δLi(t−)[1+ψi(t,Xt−,z)]

δ
∑β−1

k=α

∏k
i=α

1
1+δLi(t−)[1+ψi(t,Xt−,z)]

− 1.(5.5)

Proof. For the proof, see Appendix C.

For the approximation of the dynamics, the weights xj are frozen at t = 0. Defining ψ̃ as

ψ̃α,β (t,Xt−, z) =
1

Sα,β (0)

1−
∏β−1
i=α

1
1+δLi(0)[1++ψi(t,Xt−,z)]

δ
∑β−1

k=α

∏k
i=α

1
1+δLi(0)[1+ψi(t,Xt−,z)]

− 1,
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6. Pricing in the MSJD Framework

the approximate dynamics are given as

dS̃α,β (t)

S̃α,β (t−)
=

β−1∑
j=α

xj (0)σj (t,Xt−)′ dWα,β (t) +

∫
Rk

ψ̃α,β (t,Xt−, z)
(
µ− να,βXt−

)
(dt, dz) .(5.6)

Intensity and jump size distribution may also be approximated based on (5.1) and (5.2).

6. Pricing in the MSJD Framework

Given the dynamics of the MSJD extension to the LMM in Section 4 and the embedding of swap rates

into the model in Section 5, we now turn towards the pricing of caplets/caps and swaptions. For conve-

nience, recall that each LIBOR rate follows dynamics

dLi (t)

Li (t−)
= σi (t,Xt−)′ dW i+1 (t) +

∫
Rk

ψi (t,Xt−, z)
(
µ− νi+1

Xt−

)
(dt, dz) ,

where σi and ψi are state-dependent functions, W i+1 is a d-dimensional Qi+1-Brownian motion and

νi+1
Xt−

is the Qi+1-compensator measure of the random jump measure µ. There are different possibilities

of how volatilities, jump functions and compensators in the MSJD framework can be specified. Since

the calibration of the model will involve the fitting of parameters related to a wide range of LIBOR rates

with different maturities, we limit in a first step the dimension of Wiener process and jump space to

d = 1 and k = 1.4

Like in the introductory Section 3.3 on the log-normal LMM, the price of a caplet is given as

Capleti (t) = δ ·B (t, Ti+1) ·EQi+1

[
(Li (Ti)−K)+

∣∣Ft] .(6.1)

We employ the Laplace transform in order to further evaluate (6.1) in the MSJD specification. For

simplicity, let t = 0. The price of a caplet on the i-th LIBOR rate with strike K at time 0 may be

4At least in the case, where no jumps are considered, this is a justifiable assumption, when it comes to caplet pricing. Similar
to pricing formulas (3.6) and (3.7) developed in the log-normal LMM, our considerations show that prices depend only on
the norm of σi, that is ‖σi (t,Xt−) ‖, and not on σi (t,Xt−) itself. As underlined, e.g., by Filipovic (2009), p. 213, there
is thus no gain in flexibility for caplet pricing by introducing additional dimension into the model. Note, nonetheless, that
this is no longer true for swaption pricing.
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6. Pricing in the MSJD Framework

rewritten as

Capleti (0) = δ ·B (0, Ti+1) ·K ·EQi+1

[(
eYi(Ti)−ki − 1

)+]
,(6.2)

with Yi (t) := ln (Li (t) /Li (0)) = ln (Li (t))− ln (Li (0)) and ki = ln (K/Li (0)). Using the Laplace

transform (see Raible (2000)), the caplet’s price is given as

Capleti (0) = KexkiδB (0, Ti+1)
1

π

∫ ∞
0

Re
(
eiuki

φi (ix− u, Ti)
x2 + x− u2 + iu (2x+ 1)

)
du,(6.3)

for some x < −1, with φi (u, t) = EQi+1 [exp (iuYi (t))] denoting the characteristic function of Yi

under the corresponding Ti+1–forward measure. For the evaluation of (6.3), it is necessary to determine

a closed-form expression for φi (ix− u, Ti) for all 1 ≤ i ≤ N − 1.

6.1. Determining the Characteristic Function of YN−1

The crucial point in the pricing of caplets is to start with the LIBOR rate LN−1 (t) of longest maturity

TN−1 whose dynamics are given as

dLN−1 (t)

LN−1 (t−)
= σN−1 (t,Xt−) dWN (t) +

∫
R

ψN−1 (t,Xt−, z)
(
µ− νNXt−

)
(dt, dz) .(6.4)

As observed before, this LIBOR rate takes a special role among the other rates, because it is the only

rate, where the jump distribution is assumed to be known and the intensity is constant when conditioned

on the state of the underlying Markov chain,

νNXt− (dt, dz) = λN (Xt−) kN (Xt−, dz) dt.

The solution to the SDE (6.4) is given by the Doléans-Dade exponential

LN−1(t) = LN−1(0) · exp
(
− 1

2

∫ t

0

[
σ2N−1(s,Xs−)ds+

∫ t

0
σN−1(s,Xt−)dWN (s)

+

∫ t

0

∫
R

ln(1 + ψN−1(s,Xs−, z))µ(ds, dz)

−
∫ t

0

∫
R

ψN−1(s,Xs−, z)ν
N
Xs−(ds, dz)

])
,
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6. Pricing in the MSJD Framework

which immediately implies the dynamics of YN−1(t) = ln(LN−1(t)/LN−1(0)). In particular, for X

being in a fixed state, say Xt− ≡ ej , YN−1 (t, j) := YN−1 (t) |Xt−=ej has dynamics

dYN−1 (t, j) =− 1

2
σ2N−1 (t, ej) dt+ σN−1 (t, ej) dW

N (t)

−
∫
R
ψN−1 (t, ej , z) ν

N
j (dt, dz) +

∫
R

ln (1 + ψN−1 (t, ej , z))µ (dt, dz) .(6.5)

From this, the characteristic function of YN−1 (t, j) can be easily derived:

Proposition 6.1 (Characteristic Function of YN−1 (., j)).

The characteristic function φN−1 (u, t, j) = EQN [exp (iuYN−1 (t, j))] of YN−1 (., j) is given as

φN−1 (u, t, j) = exp

(∫ t

0
ζN−1 (s, ej , u) ds

)
,

with

ζN−1 (s, ej , u) := −u
2

2
σ2N−1 (s, ej)−

1

2
iuσ2N−1 (s, ej)− iuλN (ej)

∫
R

ψN−1 (s, ej , z) k
N (ej , dz)

+ λN (ej)

∫
R

[exp (iu ln (ψN−1 (s, ej , z) + 1))− 1] kN (ej , dz) .

Proof. Since the first and third term in (6.5) are deterministic, it suffices to analyze the second and

fourth term, which are, by assumption (II), independent. The claim then follows from the general form

of characteristic functions for Brownian motions and marked Poisson processes.

Proposition 6.1 implies that the characteristic function φN−1 (u, t) of YN−1 may be rewritten as

φN−1 (u, t) = EQN
[

exp
(
iuYN−1 (t)

)]
= EQN

[
EQN

[
exp (iuYN−1 (t))

∣∣FXt ]]
= EQN

[
exp

(∫ t

0

[
− u2

2
σ2N−1 (s,Xs−)− 1

2
iuσ2N−1 (s,Xs−)

− iuλN (Xs−)

∫
R

ψN−1 (s,Xs−, z) k
N (Xs−, dz)

+ λN (Xs−)

∫
R

[exp (iu ln (ψN−1 (s,Xs−, z) + 1))− 1] kN (Xs−, dz)
]
ds
)]
,
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by the law of iterated expectation. Let

ZN−1 (t, u) := exp
(∫ t

0

[
− u2

2
σ2N−1 (s,Xs−)− 1

2
iuσ2N−1 (s,Xs−)

− iuλN (Xs−)

∫
R

ψN−1 (s,Xs−, z) k
N (Xs−, dz)

+ λN (Xs−)

∫
R

[exp (iu ln (ψN−1 (s,Xs−, z) + 1))− 1] kN (Xs−, dz)
]
ds
)
.

In the special case that σN−1 and ψN−1 are regime-dependent constant, φN−1 (u, t) =

EQN [ZN−1 (t, u)] may then be evaluated as follows:

Proposition 6.2 (Characteristic Function of YN−1).

Let X be a Markov chain with infinitesimal generator A taking its values in the M -dimensional state

space E = {e1, . . . , eM}. Furthermore, let σN−1 (t,Xt−) ≡ σN−1 (Xt−) and ψN−1 (t,Xt−, u) ≡

ψN−1 (Xt−, u) of each state be non-time-dependent. Then, the characteristic function φN−1 (u, t) =

EQN [exp (iuYN−1 (t))] of YN−1 is given as

φN−1 (u, t) = 〈1M , exp (CN−1 (u) · t)X0〉(6.6)

where 1M ∈ RM is the vector consisting only of ones, 〈., .〉 the Euclidean scalar product in RM and

CN−1 (u) given as

CN−1 (u) = A′ + diag (ζN−1 (e1, u) , . . . , ζN−1 (eM , u)) ,

with ζN−1 (ej , u) ≡ ζN−1 (t, ej , u) given as in Proposition 6.1.

Proof. The proof is in parts based on the considerations in Elliott and Valchev (2004). Set

Gt = Xt · ZN−1 (t, u). Using the semimartingale decomposition (4.1), Xt = X0 +
∫ t
0 A
′Xsds+Mt

of X , it follows by integration by parts that

Gt = G0+

∫ t

0
ZN−1(s−)

[
A′Xs−ds+ dMs

]
+

∫ t

0
Xs−dZN−1(s)

= G0+

∫ t

0
A′Gs−ds+

∫ t

0
(. . .) dMs +

∫ t

0
XsdZN−1(s).
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Hence,

Gt = G0 +

∫ t

0
A′Gsds+

∫ t

0
(. . .) dMs

+

∫ t

0

[
− u2

2
σ2N−1 (Xs−)− 1

2
iuσ2N−1 (Xs−)

− iuλN (Xs−)

∫
R

ψN−1 (Xs−, z) k (Xs−, dz)

+ λN (Xs−)

∫
R

[exp (iu ln (ψN−1 (Xs−, z) + 1))− 1] k (Xs−, dz)
]
XsZN−1(s)ds.(6.7)

Observe that G0 = X0. We set ζN−1 (u) := (ζN−1 (e1, u) , . . . , ζN−1 (eM , u)), where ζN−1 (ej , u),

j = 1, . . . ,M are defined as above, according to Proposition 6.1. Then, (6.7) reads

Gt = X0+

∫ t

0
A′Gsds+

∫ t

0
(. . .) dMs +

∫ t

0

〈
ζN−1 (u) , Xs

〉
XsZN−1(s)ds

= X0+

∫ t

0

[
A′ + diag (ζN−1 (e1, u) , . . . , ζN−1 (eM , u))

]
Gsds+

∫ t

0
(. . .) dMs.

M is a martingale with respect to FX . Hence, taking the expectation on the previous formula yields,

under application of Fubini’s Theorem,

EQi+1 [Gt] = X0 +

∫ t

0

[
A′ + diag (ζN−1 (e1, u) , . . . , ζN−1 (eM , u))

]︸ ︷︷ ︸
=:B

EQi+1 [Gs] ds+ 0.(6.8)

For a time-independent matrix, Bs = B, the Lappo-Danilevskiî condition Bs
∫ s
t Bvdv =

∫ s
t BvdvBs

always holds. By Lemma 4.2.1 in Adrianova (1995), the solution to (6.8) is then given as

EQi+1 [Gt] = exp

(∫ t

0
Bsds

)
X0 = exp (t ·B)X0

= exp
(
t ·
[
A′ + diag (ζN−1 (e1, u) , . . . , ζN−1 (eM , u))

] )
X0.

Set CN−1 (u) = A′ + diag (ζN−1 (e1, u) , . . . , ζN−1 (eM , u)). As 1M := (1, . . . , 1)′ ∈ RM and X is

taking its values in E = {e1, . . . , eM}, we have 〈1M , Xt〉 = 1. Hence,

ΦN−1 (u, t) =
〈

1M , exp (CN−1(u) · t)X0

〉
.
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Remark 6.3 (Limitations and Possible Extensions). Note that a most convenient simplification of

ΦN−1 (u, t) in the form

ΦN−1 (u, t) =
〈

1M , exp
(
A′ · t

)
· exp (diag (ζN−1 (e1, u) , . . . , ζN−1 (eM , u)) · t)X0

〉
=
〈

1M , C · diag
(
eλ1·t, . . . , eλM ·t

)
· C−1

× diag
(
eζN−1(e1,u)·t, . . . , eζN−1(eM ,u)·t

)
X0

〉
,

as proposed in Elliott and Wilson (2003), with λ1, . . . , λM the real eigenvalues of A, and C the matrix

consisting of the corresponding eigenvectors {c1, . . . , cM}, is in general not possible. This follows from

the fact that for matrix exponentials, exp (A+B) = exp (A) exp (B) usually does not hold. The second

bad news is that whenever the coefficient functions are not constant in time, i.e.

σi (t,Xt−) 6≡ σi (Xt−) and ψi (t,Xt−, z) 6≡ ψi (Xt−, z) ,

the Lappo-Danilevskiî condition is usually violated and a solution cannot be derived so easily.

Note, however, that there are techniques how the linear homogeneous system (6.8) may be approximated

numerically in the case that the coefficient functions are not state-dependent constant and ζN−1 depend-

ing on s. One possible way is the so-called Magnus expansion (going back to Magnus (1954)) yielding

the characteristic function to be given as

φN−1(u, t) =
〈

1M ,
[ nTN−1∏

k=0

exp (Ω (tk, tk−1))
]
·X0

〉
,

on an approximation grid covering the whole interval [0, TN−1], and all Ω (tk, tk−1) are linear com-

binations of integrals and nested commutators involving the matrix Bs on the corresponding interval

(tk−1, tk]. Further details on the employment of the Magnus expansion can be found in Blanes et al.

(2009).
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6.2. Determining the Characteristic Function of Yj, j = 1, . . . , N − 2

Unlike for the terminal LIBOR rate LN−1, the compensator measures for all other LIBOR rates are

non-deterministic. Consequently, the proof of Proposition 6.2 cannot be straight-forwardly extended to

the pricing of caplets on other LIBOR rates. Notwithstanding, using observation (4.15) in Subsection

4.3, the respective compensators νi+1
Xt−

can be approximated in terms of the terminal compensator νNXt− .

Writing L̃i for the approximated LIBOR dynamics under (4.15), one observes that in a situation where

ψi is constant conditional on the state Xt−, ψi (t,Xt−, z) = ψi (Xt−, z), the compensator is state-

dependent deterministic with regime-dependent constant jump intensity. This yields the same setting

as in Proposition 6.2 and the approximative characteristic function of Ỹi = ln L̃i (t) − ln L̃i (0), i =

1, . . . , N − 2 can be determined accordingly.

6.3. Swaption Pricing

Just like in the caplet case (6.2), the price of a swaption can be written as

Swaptionα,β (0) = Cα,β (0) ·K ·Eα,β
[(
eYα,β(Ti)−kα,β − 1

)+]
,(6.9)

where Yα,β (t) = ln (Sα,β (t) /Sα,β (0)) and kα,β = ln (K/Sα,β (0)). Consequently, the price for a

swaption is given as

Swaptionα,β (0) = Kexkα,βCα,β (0)
1

π

∫ ∞
0

Re
(
e−iukα,β

φα,β (ix− u, Tα)

x2 + x− u2 + iu (1 + 2x)

)
du,

for some x < −1 and φα,β (u, t) the characteristic function of Yα,β . In order to derive the characteristic

function φα,β (u, t) of Yα,β , we go back to the approximation Ỹα,β (t) derived in (5.6). By employment

of the Doléans-Dade exponential (2.4), the dynamics of Ỹα,β (t) are given as

dỸα,β (t) =− 1

2

β−1∑
i,j=α

xi (0)xj (0)σi (t,Xt−)σj (t,Xt−) dt+

β−1∑
j=α

xj (0)σj (t,Xt−) dWN (t)

−
∫
R
ψ̃α,β (t, z) να,βXt−

(dt, dz) +

∫
R

ln
(

1 + ψ̃α,β (t,Xt−, z)
)
µ (dt, dz) .(6.10)

We furthermore approximate the compensator να,βXt−
as in (5.1) and (5.2). The adoption of Proposition
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6.2 to the pricing of swaption then reads as follows:

Corollary 6.4 (Approximative Characteristic Function of Yα,β).

Given the same conditions as in Proposition 6.2, the characteristic function φ̃α,β (u, t) =

EQα,β
[
exp

(
iuỸα,β (t)

)]
of Ỹα,β is given as

φ̃α,β (u, t) = 〈1M , exp
(
C̃α,β · t

)
X0〉,

where C̃α,β is given as C̃α,β = A′ + diag
(
ζ̃α,β (e1, u) , . . . , ζ̃α,β (eM , u)

)
, and

ζ̃α,β (ek, u) :=− u2

2

β−1∑
i,j=α

xi (0)xj (0)σi (ek)σj (ek)−
1

2
iu

β−1∑
i,j=α

xi (0)xj (0)σi (ek)σj (ek)

− iuλ̃α,β (ek)

∫
R

ψ̃α,β (ek, z) k̃
α,β (ek, dz)

+ λ̃α,β (ek, dz)

∫
R

[
exp

(
iu ln

(
ψ̃α,β (ek, z) + 1

))
− 1
]
k̃α,β (ek, dz) .

7. Calibration

The ultimate step is to investigate the extent in which the MSJD model is suited to reproduce the particu-

lar market features observed in the interest rate markets. In order to so, we develop a possible calibration

procedure that is suitable for finding parameters that can accurately reproduce the observed market prices.

Here, we only investigate the calibration to caplets/caps, but an application to the pricing of swaptions is

just as possible. With the LIBOR rate dynamics being given as

dLi (t)

Li (t−)
= σi (t,Xt−) dW i+1 (t) +

∫
R

ψi (t,Xt−, z)
(
µ− νi+1

Xt−

)
(dt, dz) ,(7.1)

the fitting procedure entails determining the parameters specifying the rate matrix A, the volatilities

σi (t,Xt−), the jump function ψi (t,Xt−, z) and the compensator νi+1
Xt−

(dt, dz), i = 1, . . . , N − 1, for

a given observation period of market data. For the sake of simplicity, the following assumptions with

respect to (7.1) are made:

• The Markov chain takes its values in a state space with only two states, E = {e1, e2}.
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• Wiener processes and mark space are one-dimensional.

• Volatilities σi(t,Xt−) ≡ σi(Xt−) and jump terms ψi (t,Xt−, z) = ez − 1 are regime-dependent

constant.

• The marker distribution of the QN -compensator νNXt− is Markov-switching Gaussian,

νNXt− (dt, dz) = λN (Xt−)
1√

2πv2J (Xt−)
exp

(
−(z −mJ (Xt−))2

2v2J (Xt−)

)
dz dt.

• The Qi+1-compensators νi+1
Xt−

, 1 ≤ i ≤ N − 2, are approximated as

ν̃i+1
Xt−

(dt, dz) =

N−1∏
j=i+1

(
1 +

δLj (0) (ez − 1)

1 + δLj (0)

)
νNXt− (dt, dz) .(7.2)

7.1. The Data

The data used in the calibration of the MSJD extension of the LMM encompassed a time period of

more than 9 years, with all trading days between 2003/01/01 and 2012/06/22 being considered (2464

days). The data source was Thomson Reuters. As the provided discount curves occasionally displayed

unrealistic edges and humps, as well as non-decreasing behavior for increasing maturities, they were

interpolated for all days by a cubic spline through the bond prices corresponding to maturities 3m, 6m,

9m, 1y, 2y, 3y, 4y, 5y, 6y, 7y, 8y, 9y, and 10y. Bond prices/discount factors for different maturities

were then derived from the interpolated curves. Investigated cap prices were based on 3m LIBOR rates,

which were in turn derived from the discount curve. In detail, we considered USD ATM caps with

maturities 1y, 2y, 3y, 4y, 5y, 7y and 10y years, quoted in volatilities v1, v2, v3, v4, v5, v7 and v10. Caplet

prices were derived from the available cap information using a bootstrapping technique. For the caps

with given maturities, prices for 39 caplets with maturities (0.25, . . . , 9.75) and expiries (0.5, . . . , 10)

were deduced. Figure 2 depicts the (forward) volatility of the caplets with maturities 2y, 2.25y, 2.5y and

2.75y.5

5An instructive example for employment of the bootstrapping technique can be found in Filipovic (2009), p. 215. Observe that
the bootstrapping procedure assumes constant volatilities for caplets in between caps of succeeding maturity. For example,
for t = 0, the (identical) volatilities σ1y for caplets with maturities 1y, 1.25y, 1.5y and 1.75y are derived based on the
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Figure 2: Fitted (forward) caplet volatility (in %) for maturities 2y, 2.25y, 2.5y and 2.75y.

7.2. Determining the States of the Markov Chain

In the first step of the calibration routine, the respective state of the underlying Markov chain X at

each day of the observation period needed to be identified. The market-implied cap volatilities were

chosen as an appropriate indicator for the overall market movement and hereby the evolvement of X . In

order to find both, the infinitesimal generator A and the most likely state of X at each time point of the

observation period, the seven different time series of cap volatilities vk were considered separately. With

the quantities of interest being volatilities, it seemed sensible to model each vk as a Markov-switching

Vasicek process

dvk (t) = κk (Xt)
(
θk (Xt)− vk (t)

)
dt+ sk (Xt) dW

P (t)

and to employ an Bayesian inference algorithm to infer the most likely path, the infinitesimal generator

of the underlying Markov chain as well as the regime-dependent parameters for each of the respective

processes. To this end, the Markov-switching Vasicek processes were approximated as Markov-

switching AR(1) processes (compare, e.g., Gray (2002)). The respective results for the different caps

were averaged and rounded to either 0 or 1 to receive an overall most likely path of the Markov chain.

In a final step, the infinitesimal generator A was derived by running another MCMC algorithm for the

previously derived most likely path of the Markov chain. The stationary distribution π = (π1, π2)
′ of A

formula

Cap (0, 2y,K2y)− Cap (0, 1y,K1y) =Caplet (0, 1y, σ1y,K2y) + Caplet (0, 1.25y, σ1y,K2y)

+ Caplet (0, 1.5y, σ1y,K2y) + Caplet (0, 1.75y, σ1y,K2y) ,

where Caplet (0, Tj , σ1y,K2y) denotes the price of a caplet at t = 0 with maturity Tj , expiry Tj+1 and ATM cap strikeK2y

for maturity 2y, evaluated by the Black (1976)-formula for constant volatility σ1y.
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was determined via the relation π′A = 0, with π1 + π2 = 1.

Note that the derived infinitesimal generator A of X is in fact the generator with respect to the physical

measure P. However, in accordance with usual practice, we take A to be the already risk-adjusted

generator under Q (compare Maul (2012)). By Remark 4.4, A is then also the infinitesimal generator of

X with respect to the forward measures Q2,. . . ,Q40.

7.3. Fitting the Volatility and Jump Parameters

Next, the time series was separated according to the regimes determined in Section 7.2. As the pricing

formula (6.3) is rather involved, the calibration procedure for volatility and jump parameters was fur-

ther split up: First the parameters of the LIBOR rate with longest maturity, LN−1, were estimated on a

step-by-step basis. These comprise σN−1 (ej), λN (ej), mJ(ej), and v2J(ej), j = 1, 2. Through relation

(7.2), the knowledge about the terminal compensator νNXt− then allowed us to approximate the compen-

sators of all other forward measures. Consequently, the second step of the fitting routine simply entailed

determining the volatilities σ1 (ej) , . . . , σN−2(ej), j = 1, 2, for the remaining LIBOR rates.

Determining the Parameters Related to LN−1

A straight-forward approach to fitting the parameters for the LIBOR rate LN−1 would be a least-square

minimization over some subperiod of the observation time period.6 To this end, we would consider the

sum of least squares,

k∑
l=1

1(
CapletMKT

N−1 (tl)
)2 (CapletMOD

N−1 (tl)− CapletMKT
N−1 (tl)

)2
,(7.3)

where k is some larger number, and t1, . . . , tk are some successive time points, CapletMKT
N−1 is the market-

observed price and CapletMOD
N−1 is the model price determined by the pricing formula (6.3). The pre-

factors ensure that all summands are of about the same scale. Surprisingly at first sight, (7.3) constitutes

an under-determined problem. To understand why this is the case, recall that the main role in the pricing

formula (6.3) is taken by the characteristic function. Following Proposition 6.2, its evaluation basically

6An example for non-Markov-switching jump diffusion illustrating this approach can, e.g., be found in Cont and Tankov
(2004).
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reduces to an eigenvalue problem, i.e., the calculation of the matrix exponential

exp (CN−1 (u)) = exp

(
t ·

−a1,2 + ζN−1 (e1, u) a2,1

a1,2 −a2,1 + ζN−1 (e2, u)

)

= D · diag(eλ1 , eλ2) ·D−1,

where λ1, λ2 are the eigenvalues of CN−1(u) and D is the matrix of the corresponding eigenvectors. As

commonly known, the eigenvalues are the roots of the characteristic polynomial,

λ1, λ2 = −1

2
(a1,2 − ζN−1 (e1, u) + a2,1 − ζN−1 (e2, u))(7.4)

±
√

1

4
(a1,2 − ζN−1 (e1, u) + a2,1 − ζN−1 (e2, u))2 − a1,2a2,1.

Two things become apparent from representation (7.4): First, ζN−1 (e1, u) and ζN−1 (e2, u) are com-

pletely interchangeable, and it is hence impossible to determine whether ζN−1 (e1, u) or ζN−1 (e2, u)

takes a bigger value. Even worse, there might be infinitely many pairs of (ζN−1 (e1, u) , ζN−1 (e2, u))

that satisfy relation (7.4), for a given pair of eigenvalues, and we have an under-determined system (as

there are two variables for one equation). As a second problem, it is impossible to determine with what

weight the volatility part and the jump part of ζN−1 enter into the characteristic function. It would be

even possible to completely disregard either one of the parts and yet be able to fit the market prices

just as well as if both parts played a role. As a result of these observations, there are infinitely many

parameters that will yield a minimal squared distance between model and market prices.

To avoid the problem, we pursued a different approach than a least-squares minimization:

(i) Based on the market-observed LIBOR rate movements for LN−1, we determined an estimate for

the jump intensity λP(ej) and the jump size distribution kP (ej , ·), j = 1, 2 by considering the

logarithmized and discretized dynamics of ỸN−1(t) := ln(LN−1(t)/LN−1(t− 1)),

ỸN−1(t) = α̂N−1 + σN−1(W
P(tj)−WP(tj−1)) + ξPN−1(tj , Xtj )J

P

N−1(tj , Xtj ).

with ξPN−1 the jump size and JPN−1 a discrete random variable taking either value 0 (“no jump”) or
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1 (“jump”) in each interval. For details, see, e.g., Johannes et al. (1999). The estimation is based

on an MCMC algorithm for jump diffusions. Observe that the derived parameters areP-quantities.

(ii) For every day of each time series corresponding to state e1 and e2, we used the market-observed

caplet prices CapletN−1 and ran a nonlinear optimization routine to derive a first estimate of the

volatility, σ̃N−1(ej), j = 1, 2. This estimate was retrieved by ignoring the jump part in the pricing

formula. In order to guarantee for a unique solution, we let

QN (Xt = e1) · σ̃N−1 (e1) +QN (Xt = e2) · σ̃N−1 (e2) = σMKT
N−1,(7.5)

which reflects the reasonable assumption that the market-observed volatility is the investors’

expected volatility, based on two possible states for each day with corresponding volatilities

σ̃N−1 (e1) and σ̃N−1 (e2).

(iii) The inaccuracy in overestimating volatility in Step (ii) was corrected in the final step where, based

on the MSJD dynamics (7.1), the results from Step (i) and (ii) were combined. Again given daily

market prices CapletN−1, another nonlinear optimization routine was run to determine the QN -

parameters σN−1, λN , mN
J and vNJ . Solutions were found by postulating further requirements:

The proportionality between σ̃N−1 (e1) and σ̃N−1 (e2) is conserved by requiring

σN−1 (e1)

σN−1 (e2)
=

σ̃N−1 (e1)

σ̃N−1 (e2) .

For the jump parameters, it is assumed that the jump size distribution is not influenced by the

measure change from P to QN , kN (Xt−, ·) ≡ kP (Xt−, ·). In contrast, the jump intensity differs

betweenP andQN . Assuming that the intensities do not change over time, by Girsanov’s Theorem

2.3 there exists a φ(Xt−) ≡ c such that
(
λN (e1), λ

N (e2)
)

= c ·
(
λP(e1), λ

P(e2)
)
. Last, but not

least, we postulate that

120%·(integral evaluated without jump part) ≤ integral evaluated with jump part

≤ 200% · (integral evaluated without jump part).(7.6)
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This seems to be a reasonable assumption as both, volatility and jump, should have a significant

influence on the evaluation of the characteristic function.

Note that only every tenth day in the available time series is considered, a choice in favor of computation

time. Nonetheless, there should be no worries that this limitation could be of data-distorting character, as

the considered time points were chosen to be equidistant and no further limiting assumptions were made.

Determining the Parameters Related to L1, . . . , LN−2

As the jump part in the dynamics of every LIBOR rate had already been completely determined by

the results of the previous subsection, the only step that remained to be done was the derivation of

volatilities σi(ej), j = 1, . . . , N − 2, j = 1, 2. The fitting was done on a daily basis, by again first

fitting a model without jumps to find estimates (σ̃i(e1), σ̃i(e2)) and then reintroducing jumps into the

model. Again, the actual volatilities (σi(e1), σi(e2)) were set to have the the proportion as the first

estimates (σ̃i(e1), σ̃i(e2)), yielding a unique solution of the fitting problem. The jump parameters are set

according to the calibration results from the previous section. Again, the fmincon algorithm was used

for fitting.

7.4. Discussion of the Results of the Calibration

All market-observed caplet prices could be perfectly reproduced within the MSJD extension. Both Gibbs

samplers, for the determination of the parameters describing the Markov chain and the jump parameters,

displayed very good sampling behavior. For both samplers, the generated Markov chain mixed well, as

the parameter space was exploited nicely, and after a very short burn-in, convergence was reached. It

may hence be concluded that this extension is a suitable generalization to existing LIBOR market models

and can help to account for jumps and overall market trends. The detailed results for the different steps

of the calibration are as follows:

For the most likely state of the Markov chain at different time points, the path estimates for the different

cap volatilities are very similar. Figure 3 displays the result for the time series of a cap with maturity 1y.

This gives the ex post justification of considering all cap volatilities independently and then taking the

average path. Based on this average path, the rate matrixA and the corresponding stationary distribution
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Figure 3: Estimated states of the economy at all days of the time series, for cap volatilities v1.

π are given as

A =

−10.7910 10.7910

17.9111 −17.9111

 and π =

0.6239

0.3761

 .

The findings coincide with the intuition that the market is more likely to reside in a ‘normal’ state than

in the excited state as π1 � π2 (see also Svoboda (2005)).

For Step (i), the sampled parameters in Table 1 display that there is a tendency in state e1 towards jumps

into a positive direction, while jumps in state e2 have a slightly downwards tendency. This coincides

with the intuition that in times of crises and market unrest, a downwards tendency should also manifest

itself in the jump sizes. Also, as λP(e2) > λP(e1), it seems that in times of crises, jumps happen more

often.

For Step (ii), the caplet prices were perfectly recovered at all times. It turned out that

(σ̃N−1(e1), σ̃N−1(e2)) and σMKT
N−1 are in fact fairly close together for all time points. Finally, for Step (iii),

we find that an estimate of c = 0.6 yields very good results for the algorithm minimizing the distance be-

tween model and market prices. Only for few points, the constraints do not allow to perfectly reproduce
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Parameters Sampled Values Standard Error
(λP(e1), λ

P(e2)) (0.1823, 0.2263) (8.6105 · 10−05, 3.1956 · 10−04)

(mJ(e1),mJ(e2)) (0.0014,−0.0053) (1.2693 · 10−05, 1.8959 · 10−05)

(v2J(e1), v
2
J(e2)) (0.0026, 0.0026) (1.2317 · 10−06, 2.8182 · 10−06)

Table 1: Sampled jump parameters from the MCMC algorithm for jump diffusions.

the market price through the model. It follows that
(
λN (e1) , λ

N (e2)
)

= 0.6 ·
(
λP (e1) , λ

P (e2)
)

=

(0.1091, 0.1391), yielding a similar result to the calibration for the (non Markov-switching) jump diffu-

sion model of Belomestny and Schoenmakers (2011) where the jump intensity is estimated as 0.1.

Figure 4: Fitting of σ9.75(e1) (dashed) and σ9.75(e2) (dotted) and the observed market volatility (solid)
for the caplet with longest maturity 9.75 (in %). The depicted time frame is 2009-12-08 until
2011-06-21.

For fixed c = 0.6, the results for the true volatilities (σN−1(e1), σN−1(e2)) are depicted in Figure 4. All

market prices in the investigated observation period were perfectly reproduced. An ex post investigation

of the limits set in (7.6) indicate that the limits were always at least nearly respected. Last, Figure 5 shows

the fitting of the volatilities for the LIBOR rate with maturity 3.75. Also here, caplet prices Caplet3.75

were perfectly reproduced for all time points.

8. Conclusion

In this paper, we have addressed some of the problems arising in the context of the log-normal LIBOR

market model by replacing the ordinary diffusion of the original model by a Markov-switching jump dif-

fusion process. By doing so, we have encountered both, the need to model different economic phases as

well as suddenly occurring jumps, as observed in market data. By exploiting the relation between bond
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8. Conclusion

Figure 5: Fitting of σ3.75(e1) (dashed) and σ3.75(e2) (dotted) and the observed market volatility (solid)
for the caplet with maturity 3.75, c = 0.6. The depicted time frame is 2003-10-09 until 2005-
04-21.

prices, forward rates, and simple rates, we successfully showed that such an extension to the original

model can be embedded into a generalized Markov-switching Heath-Jarrow-Morton (HJM) model. We

thereby proved that our model extension is free of arbitrage. The LIBOR rates were shown to follow

Markov-switching jump diffusions without drift under their respective forward measure. With measure

changes playing the central role within the model derivation, we proved the central result that measure

changes between forward measures and the risk-neutral measure have no effect on the infinitesimal gen-

erator of the underlying Markov chain. Wiener processes and Markov-switching compensator, however,

do follow different dynamics under different measures and we derived expressions for their interrela-

tions. While the introduced interest rate dynamics are rich enough to incorporate both sudden shocks

and structural market movement into the model, we showed that they are still simple enough to allow

for the pricing of caps/floors. Under the assumption of volatilities being modeled as Markov-switching

constants, we showed that the characteristic functions of the logarithmized LIBOR rates needed for pric-

ing with Laplace transforms can be derived in analytical form. Eventually, we demonstrated in the last

section that the model can be successfully calibrated to market-observed cap/caplet prices, even though

this procedure is related to a considerable amount of effort. In particular, it is necessary to make addi-

tional reasonable assumptions to further specify the parameters to be estimated. Ex post, all assumptions

made turned out to be reasonable, as market prices could be perfectly recovered in all cases considered.

In summary, the MSJD extension to the LIBOR Market Model has been shown to not only considerably

enrich the possible dynamics under which interest rates can be modeled, but also provides an appropriate

basis for further research and discussion.
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A. Proof of Proposition 4.1

A. Proof of Proposition 4.1

The proof for 1. follows along the lines of reasoning in Brace et al. (1997). The Q–dynamics of Li,

i = 1, . . . , N − 1, are determined by deriving (4.6) on both sides and using the no-arbitrage condition

(4.4). In detail, let τ = T − t, τ− = T − t− and τi = Ti − t. Also, set r (t, τ) = f (t, t+ τ) = f (t, T )

and Ki (t, τi) := Li (t, t+ τi, t+ τi + δ). Let

a∗ (t,Xt−, τ) = α∗ (t,Xt−, T ) , s∗ (t,Xt−, τ) = ς∗ (t,Xt−, T ) ,(A.1)

g∗ (t,Xt−, τ, z) = γ∗ (t,Xt−, T, z)

and

a (t,Xt−, τi) = αi (t,Xt−) , s (t,Xt−, τi) = ςi (t,Xt−) , g (t,Xt−, τi, z) = γi (t,Xt−, z) .(A.2)

Using ∂
∂τ r (t, τ) = ∂

∂T f (t, T ), it follows from (4.3) that the dynamics of r are given as

dr (t, τ) = df (t, t+ τ) +
∂

∂T
f (t, t+ τ) dt(A.3)

= a∗ (t,Xt−, τ) dt+ s∗ (t,Xt−, τ) dWQ (t)

+

∫
g∗ (t,Xt−, τ, z) (t, τ, z)

(
µ (dt, dz)− νQXt−

)
(dt, dz) +

∂

∂τ
r (t, τ) dt.

By (4.5) and (A.1),

a∗ (t,Xt−, τ) = − ∂

∂τ
a (t,Xt−, τ) , s∗ (t,Xt−, τ) = − ∂

∂τ
s (t,Xt−, τ) ,

g∗ (t,Xt−, τ, z) = − ∂

∂τ
g (t,Xt−, τ, z) .

Inserting this into (A.3) yields

dr (t, τ) =
∂

∂τ

[
(r (t, τ)− a (t,Xt−, τ)) dt(A.4)

− s (t,Xt−, τ) dWQ (t)−
∫
Rk

g (t,Xt−, τ, z)
(
µ− νQXt−

)
(dt, dz)

]
.
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Let

Xi (t) := ln

(
B (t, t+ τi)

B (t, t+ τi + δ)

)
=

∫ t+τi+δ

t+τi

f (t, u) du =

∫ τi+δ

τi

r (t, u) du.

The derivation of Xi in component t yields, due to (A.4),

dXi (t) = (r (t, τi+1)− r (t, τi) + a (t,Xt−, τi)− a (t,Xt−, τi+1)) dt

+ (s (t,Xt−, τi)− s (t,Xt−, τi+1)) dW
Q (t)

+

∫
Rk

(g (t,Xt−, τi, z)− g (t,Xt−, τi+1, z))
(
µ− νQXt−

)
(dt, dz) .

The application of Itō’s Lemma 2.1 to Ki (t, τi) = δ−1
[
exp(Xi(t))− 1

]
, furthermore gives, after some

rearrangements,

dKi (t, τi) = exp(Xi(t))

[[
r (t, τi+1)− r (t, τi) + a (t,Xt−, τi)− a (t,Xt−, τi+1)

+
1

2
‖s (t,Xt−, τi)− s (t,Xt−, τi+1)‖2

]
dt

+ [s (t,Xt−, τi)− s (t,Xt−, τi+1)]
′ dWQ (t)

+

∫
Rk

(
g (t,Xt−, τi, z)− g (t,Xt−, τi+1, z)

(
µ− νQXt−

)
(dt, dz)

)
+

∫
Rk

(
eg(t,Xt−,τi,z)−g(t,Xt−,τi+1,z) − 1

− (g (t,Xt−, τi, z)− g (t,Xt−, τi+1, z))
)
µ (dt, dz)

]
.

Because Ki(t, τi) = δ−1
[
exp(Xi(t))− 1

]
, it follows that

dKi (t, τi) =
1

δ
(1 + δKi (t−, τi−))

[
. . .
]
.(A.5)
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Observe next that dLi (t) = dKi (t, τi)− ∂
∂τi
Ki (t, τi). Hence, by (A.2) and (A.5),

dLi (t) =
1

δ
(1 + δLi (t−))

[[
αi (t,Xt−)− αi+1 (t,Xt−) +

1

2
‖ςi (t,Xt−)− ςi+1 (t,Xt−)‖2

]
dt

+ [ςi (t,Xt−)− ςi+1 (t,Xt−)]′ dWQ (t)

+

∫
Rk

(
γi (t,Xt−, z)− γi+1 (t,Xt−, z)

(
µ− νQXt−

)
(dt, dz)

)
+

∫
Rk

(
eγi(t,Xt−,z)−γi+1(t,Xt−,z) − 1− (γi (t,Xt−, z)− γi+1 (t,Xt−, z))

)
µ (dt, dz)

]
.

Insertion of the no-arbitrage condition (4.4) immediately yields (4.7).

For 2., the Change-of-Numéraire Technique 2.2 is applied. The Radon-Nikodým derivative for changing

from the risk-neutral measure Q to the forward measure Qi+1 is given by

dQi+1

dQ

∣∣∣∣
Ft

:= Mi+1 (t) :=
B (t, Ti+1)

Bt

1

B (0, Ti+1)
.

With bonds being the primary traded assets of the market, the processes (B(t, Ti)/Bt)t∈[0,Ti],

i = 1, . . . , N , are all Q-martingales. Taking furthermore into account that B (t, Ti) =

exp
(
−
∫ Ti
t f(t, u)du

)
, it is rather straightforward (see, e.g., Björk et al. (1997)) that

d

(
B(t, Ti+1)

Bt

)
=

(
B(t−, Ti+1)

Bt−

)[
ςi+1(t,Xt−)′dWQ(t)

+

∫
Rk

γi+1(t,Xt−, z)
(
µ− νQXt−

)
(dt, dz)

]

Consequently, the dynamics of Mi+1 are given as

dMi+1 (t) =
1

B (0, Ti+1)
d

(
B (t, Ti+1)

Bt

)
= Mi+1 (t−)

[
ςi+1 (t,Xt−)′ dWQ (t) +

∫
Rk

γi+1 (t,Xt−, z)
(
µ− νQXt−

)
(dt, dz)

]
.

By assumption, ςi+1 and γi+1 are integrable. In combination with the specification of the jump measure,

the conditions of Girsanov’s Theorem 2.3 are satisfied, and we may define aQi+1-Wiener process W i+1
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by

dW i+1 (t) = −ςi+1 (t,Xt−) dt+ dWQ (t)(A.6)

and a Qi+1-compensator νi+1
Xt−

through

νi+1
Xt−

(dt, dz) = exp (γi+1 (t,Xt−, z)) ν
Q
Xt−

(dt, dz) .(A.7)

Inserting (A.6) and (A.7) into dynamics (4.7), the dynamics of δ
1+δLi(t−) · dLi(t) are given as

δ · dLi (t)

1 + δLi (t−)
= (ςi (t,Xt−)− ςi+1 (t,Xt−))′ dW i+1 (t)

+

∫
Rk

(
eγi(t,Xt−,z)−2γi+1(t,Xt−,z) − e−γi+1(t,Xt−,z) + 1

− eγi(t,Xt−,z)−γi+1(t,Xt−,z)
)
νi+1
Xt−

(dt, dz)

+

∫
Rk

(
eγi(t,Xt−,z)−γi+1(t,Xt−,z) − 1

)
µ (dt, dz)

+

∫
Rk

(
eγi(t,Xt−,z)−2γi+1(t,Xt−,z) − e−γi+1(t,Xt−,z)

)
νi+1
Xt−

(dt, dz) (dt, dz) .

Rearranging the terms yields the claimed dynamics.

For 3., set

ςi+1 (t,Xt−)− ςi (t,Xt−) =
δLi (t)

1 + δLi (t)
σi (t,Xt−) ,(A.8)

eγi(t,Xt−,z)−γi+1(t,Xt−,z) − 1 =
δLi (t)

1 + δLi (t)
ψi (t,Xt−, z) .(A.9)

By substituting (A.8) and (A.9) into (4.8), dynamics (4.9) then immediately follow.
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B. Proof of Proposition 5.1

Under the terminal measure QN , the dynamics of the k-th LIBOR rate in (4.13) can be written as

dLk (t)

Lk (t−)
= αk (t,Xt−) dt+ σk (t,Xt−)′ dWN (t) +

∫
Rk

ψk (t,Xt−, z)
(
µ− νNXt−

)
(dt, dz) ,

with αk denoting the drift term

αk =−
N−1∑
j=k+1

δLj (t−)

1 + δLj (t−)
σk (t,Xt−)′ σj (t,Xt−) dt

−
∫
Rk

ψk (t,Xt−, z)

 N−1∏
j=k+1

(
1 +

δLj (t−)

1 + δLj (t)
· ψj (t,Xt−, z)

)
− 1

 νNXt− (dt, dz) .

The Radon-Nikodým derivative ηN,α,β corresponding to a measure change from QN to Qα,β is by the

Change-of-Numéraire Technique 2.2 given as

ηN,α,β (t) :=
dQα,β

dQN

∣∣∣∣
Ft

=
B (0, TN )

Cα,β (0)

Cα,β (t)

B (t, TN )
= δ

B (0, TN )

Cα,β (0)

β−1∑
i=α

B (t, Ti+1)

B (t, TN )
(B.1)

where the definition of the annuity Cα,β (t) in (3.4) was inserted. For all α ≤ i ≤ β − 1, the term

B (t, Ti+1) /B (t, TN ) is a forward contract on the bond B (t, Ti+1) with maturity TN , and therefore a

QN -martingale. Consequently, ηN,α,β is a QN -martingale as well. Inserting

B (t, Ti+1)

B (t, TN )
=

N−1∏
k=i+1

(1 + δLk (t))(B.2)

into (B.1), it follows that

dηN,α,β (t) = δ
B (0, TN )

Cα,β (0)

( β−1∑
i=α

d

[ N−1∏
k=i+1

(1 + δLk (t))

])
.(B.3)
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By Itō’s Lemma 2.1,

d

[ N−1∏
k=i+1

(1 + δLk (t))

]

=(. . .) dt+

N−1∑
j=i+1

δLj (t−)

1 + δLj (t−)

N−1∏
k=i+1

(1 + δLk (t))
[
σj (t,Xt−)′ dWN (t)

]

+
N−1∏
k=i+1

(1 + δLk (t−))

∫
Rk

[ N−1∏
j=i+1

(
1 +

δLj (t−)ψj (t,Xt−, z)

1 + δLj (t)

)
− 1
](
µ− νNXt−

)
(dt, dz) .(B.4)

Due to the observed martingale property of ηN,α,β under QN , the drift term (. . .) dt may be eliminated

when inserting (B.4) into Equation (B.3). Consequently, (B.3) can be rewritten as

dηN,α,β (t) = δ
B (0, TN )

Cα,β (0)

( β−1∑
i=α

N−1∏
k=i+1

(1 + δLk (t))

×
[ N−1∑
j=i+1

δLj (t−)

1 + δLj (t−)
σj (t,Xt−)′ dWN (t)

+

∫
Rk

[ N−1∏
j=i+1

(
1 +

δLj (t−)ψj (t,Xt−, z)

1 + δLj (t)

)
− 1
](
µ− νNXt−

)
(dt, dz)

])

= δ
B (0, TN )

Cα,β (0)

1

B (t, TN )

( β−1∑
i=α

B (t, Ti+1)

×
[ N−1∑
j=i+1

δLj (t−)

1 + δLj (t−)
σj (t,Xt−)′ dWN (t)

+

∫
Rk

[ N−1∏
j=i+1

(
1 +

δLj (t−)ψj (t,Xt−, z)

1 + δLj (t)

)
− 1
](
µ− νNXt−

)
(dt, dz)

])
.

where (B.2) was re-substituted. Expanding the term with the annuity Cα,β (t) furthermore gives

dηN,α,β (t)

ηN,α,β (t−)
=δ

β−1∑
i=α

B (t, Ti+1)

Cα,β (t)

[ N−1∑
j=i+1

δLj (t−)

1 + δLj (t−)
σj (t,Xt−)′ dWN (t)

+

∫
Rk

 N−1∏
j=i+1

(
1 +

δLj (t−)ψj (t,Xt−, z)

1 + δLj (t)

)
− 1

(µ− νNXt−) (dt, dz)
]
.

The application of Girsanov’s Theorem 2.3 then yields the claim.
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C. Proof of Proposition 5.2

Using the defining property (3.1) of LIBOR rates, the expression for swap rates (3.3) may be rewritten

as

Sα,β (t) =
1−

∏β−1
i=α

1
1+δLi(t)

δ
∑β−1

k=α

∏k
i=α

1
1+δLi(t)

.(C.1)

Once again employing Itō’s Lemma 2.1, we find

dSα,β (t) = (. . .) dt+

β−1∑
j=α

∂Sα,β (t)

∂dLj (t)
Lj (t−)σj (t,Xt−)′ dW j+1 (t)

+

∫
Rk

[ 1−
∏β−1
i=α

1
1+δLi(t−)[1+ψi(t,Xt−,z)]

δ
∑β−1

k=α

∏k
i=α

1
1+δLi(t−)[1+ψi(t,Xt−,z)]

− Sα,β (t−)

](
µ− νj+1

Xt−

)
(dt, dz) ,

where all drift terms were summarized in (. . .) dt. Division by Sα,β(t−) on both sides yields

dSα,β (t)

Sα,β (t−)
= (. . .) dt+

β−1∑
j=α

∂Sα,β (t)

∂dLj (t)

Lj (t−)

Sα,β (t−)
σj (t,Xt−)′ dW j+1 (t)

+

∫
Rk

1

Sα,β (t−)

[ 1−
∏β−1
i=α

1
1+δLi(t−)[1+ψi(t,Xt−,z)]

δ
∑β−1

k=α

∏k
i=α

1
1+δLi(t−)[1+ψi(t,Xt−,z)]

− Sα,β (t−)

](
µ− νj+1

Xt−

)
(dt, dz)

= (. . .) dt+

β−1∑
j=α

xj(t)σj (t,Xt−)′ dW j+1 (t)(C.2)

+

∫
Rk

ψα,β (t,Xt−, z)
(
µ− νj+1

Xt−

)
(dt, dz)

]
,

where the drift term is appropriately adjusted, xj (t) := ∂Sα,β (t) /∂Lj (t) · Lj (t−) /Sα,β (t−) and

ψα,β (t,Xt−, z) is defined as in (5.5). Observe next that, using again (B.2),

∂

∂Lj (t)

(
1−

β−1∏
i=α

1

1 + δLi (t)

)
=

δ

1 + δLj (t)

β−1∏
i=α

1

1 + δLi (t)
=

δ

1 + δLj (t)
·
B (t, Tβ)

B (t, Tα)

and

∂

∂Lj (t)

(
δ

β−1∑
k=α

k∏
i=α

1

1 + δLi (t)

)
=

−δ2

1 + δLj (t)

β∑
k=j

k∏
i=α

1

1 + δLi (t)
=

−δ2

1 + δLj (t)

β−1∑
k=j

B (t, Tk+1)

B (t, Tα)
.
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C. Proof of Proposition 5.2

By (3.3), the swap rate can also be written as Sα,β (t) = [B (t, Tα) − B (t, Tβ)]/Cα,β (t). Hence,

applying the ordinary differentiation product rule to (C.1), it follows that

∂Sα,β (t)

∂Lj (t)
=

∂

[(
1−

∏β−1
i=α

1
1+δLi(t)

)
·
(
δ
∑β−1

k=α

∏k
i=α

1
1+δLi(t)

)−1]
∂Lj (t)

=
1

Cα,β (t)
· δ

1 + δLj (t)
·B (t, Tβ)

−
B (t, Tα)−B (t, Tβ)

C2
α,β (t)

· −δ2

1 + δLj (t)

β−1∑
k=j

B (t, Tk+1)

=
1

Cα,β (t)
· δ

1 + δLj (t)

B (t, Tβ) +
B (t, Tα)−B (t, Tβ)

Cα,β (t)
· δ

β−1∑
k=j

B (t, Tk+1)


=

Sα,β (t) δ

1 + δLj (t)

 B (t, Tβ)

B (t, Tα)−B (t, Tβ)
+

1

Cα,β (t)
· δ

β−1∑
k=j

B (t, Tk+1)

 .

Consequently,

xj (t) =
δLj (t)

1 + δLj (t)

 B (t, Tβ)

B (t, Tα)−B (t, Tβ)
+

1

Cα,β (t)
· δ

β−1∑
k=j

B (t, Tk+1)

 .

Dynamics (5.4) then immediately follow from employing Theorem 5.1 that allows to change in (C.2)

from the forward measureQi+1 to the swap measureQα,β . The martingale property of Sα,β with respect

to Qα,β is used to eliminate the drift term. This proves the claim.
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