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We study a two-player investment game with information externalities. Necessary and

sufficient conditions for a unique symmetric switching equilibrium are provided. When

public news indicates that the investment opportunity is very profitable, too many

types are investing early and investments should therefore be taxed. Conversely, any

positive investment tax is suboptimally high if the public information is sufficiently

unfavorable.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In 1996 the then Chairman of the Federal Reserve Board Alan Greenspan warned investors that they were in the grip of
‘‘irrational exuberance’’. This catchy wording instantly made headlines and initially caused a sell-off of stock around the
world. Greenspan’s concern that markets were overoptimistic was based, among other things, on the—in his words—

‘‘epic’’ multibillion-dollar investments of telecom companies into fiber-optic cable, which he believed would lead to
significant losses for most companies involved. Greenspan, however, did not think that it was up to the Fed or to the
federal government to intervene in the investment decisions of other agents. In particular, 30 months after his famous
speech he came to the conclusion that

‘‘How do you draw the line between a healthy, exciting economic boom and a ybubble y?y After thinking a great
deal about this, I decided thaty the Fed would not second-guess ‘‘hundreds of thousands of informed investors.’’
Instead the Fed would position itself to protect the economy in the event of a crash.’’ (Greenspan, 2008, p. 200-1)

Greenspan thus thought that when investors are informed policy makers should not interfere in their investment
decisions—a rationale that we believe was shared broadly among policy makers in many countries. His eloquent quote is
a specific example of the common argument that governments should not interfere with better-informed business decisions.
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We question this rationale in a basic social-learning model and illustrate that even when rational investors are better
informed than a policy maker, investments should be taxed when public news is sufficiently favorable.

Formally, we develop a two-player investment game to analyze this reasoning in more detail. There is a state of the
world drawn from a normal distribution whose mean equals y. If the state of the world is positive, both players should
invest. If the state of the world is negative, no one should invest. Public news regarding the realization of the state of the
world is captured by the prior mean y. Public news can be favorable for different reasons. For example, there are favorable
‘‘stories’’ in the public domain about the realization of the fundamental or—perhaps as a consequence of past favorable
public news—an investment boom occurred in the previous period. The public news is on average correct, but can
sometimes be completely wrong. In particular, it is possible that the public news depicts the investment opportunity as a
‘‘golden’’ one, when in reality the state of the world is negative. To capture the idea that individual investors are better
informed than the policy maker, we assume that both players get an additional normally distributed private signal about
the realization of the state. Players combine the public news and their private information to compute the expected
returns from investing. They then simultaneously decide whether or not to invest in period one. If a player invests, her
payoff equals the state of the world. A player who has not invested in period one, observes the other player’s period-one
decision and then reconsiders her choice in period two. Payoffs from acting late are discounted, and a player who does not
invest receives her outside option.

A rational player, by delaying her investment decision, can thus learn by observing the other player’s first-period
investment decision. The more optimistic a player is, the less willing she is to delay as returns from investing at a later
point in time are discounted. In line with this intuition, we focus on switching equilibria in which a player invests
whenever her expectation of the state of the world lies above a certain cutoff. Crucially, the value of waiting in our social-
learning model depends on the other player’s behavior. Whenever the other player’s cutoff is sufficiently low, seeing her
investing comes as no surprise. In this case an investment decision contains little information, which makes waiting for
further information relatively undesirable. When the other player’s cutoff becomes higher, she will invest less often. An
investment decision then reveals that she has good private information which, in turn, makes waiting more desirable.
Whenever this force is strong enough, our game is characterized by multiple symmetric switching equilibria.1 Section 4
therefore investigates conditions under which a laissez-faire economy has a unique symmetric switching equilibrium. We
find among other conditions that if players are sufficiently patient, our game possesses only one symmetric switching
equilibrium. The symmetric switching equilibrium is also unique whenever the public news is either sufficiently good
or bad.

Building on this characterization, Section 5 investigates the optimal symmetric investment cutoff that a social planner
would want to implement. As mentioned above, we assume that the social planner has access only to the public
information regarding the investment opportunity, and has no private knowledge that is concealed from the potential
private investors. We first establish that the social planner does not want to distort second-period investment cutoffs; in
the final period rational players want to and should invest whenever the expected state of the world is positive. We also
characterize the optimal first-period cutoff. In particular, we show that if the public news is sufficiently favorable, it is
optimal to raise the first-period investment cutoff. Roughly speaking, if the public news is favorable, both players are very
likely to invest early in the laissez-faire economy, which implies that the informational content of an investment decision
is low. Raising the cutoff increases the informational content of the first-period investment decision and leads to a greater
positive externality. We then analyze the case in which the public news is unfavorable. Consider any cutoff higher than the
one that prevails in a laissez-faire economy. We show that welfare with this cutoff is lower than in the laissez-faire
economy whenever the prior mean is sufficiently low. In the limit as the prior mean goes to minus infinity, thus, either
investments should be subsidized or the laissez-faire policy is optimal.

Section 6 establishes that the optimal cutoff can be implemented through a period-one investment tax (or subsidy). In
particular, whenever the public news is sufficiently favorable, this is achieved through taxing first-period investment
activity. The implementation, however, need not be unique even if the equilibrium of the laissez-faire economy is unique.
Nevertheless, we establish that taxation is strictly optimal when the public news is sufficiently favorable by showing that
positive tax rates exists for which both equilibrium remains unique and welfare is higher.

Section 2 outlines the existing social-learning literature. We highlight that one needs to extend the canonical social-
learning model to address our policy question: The standard model with a binary state and signal space, for example, is
characterized by multiple equilibria and the optimality of taxing or subsidizing investments in this model depends on—in
our view—ad-hoc assumptions about equilibrium selection. Section 3 outlines the model. Section 4 analyzes the laissez-faire
economy and derives a variety of conditions that ensure uniqueness of the symmetric switching equilibrium. In Section 5 we
solve the social planner’s problem; we discuss the implementation through state-dependent and time-varying taxation in
Section 6. Finally, in Section 7 we discuss possible extensions and variants of our model, and some shortcomings of our
approach.

1 A switching strategy is symmetric if both players use the same cutoff. In our symmetric environment, it is natural to analyze these equilibria. In the

working paper version of this paper (see Heidhues and Melissas, 2010), we prove that if the public news is sufficiently favorable, every switching

equilibrium is symmetric.
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2. Literature review

Social learning has been intensively studied when players are assumed to move in an exogenously specified order.2

Hendricks and Kovenock (1989) were the first to analyze a game with information externalities in which players choose
whether and when to drill. They were also the first to highlight the possibility of an informational cascade: If Player one
did not drill at time one, this signals unfavorable private information. In turn, this induces Player two not to drill at time
two. In equilibrium, both players may end up not drilling even though—had they pooled their private information—at
least one player should have drilled at time one.

Although numerous papers analyze different waiting games,3 to the best of our knowledge only Gossner and Melissas (2006),
Levin and Peck (2008) and Doyle (2010) study optimal taxation in such a game. Furthermore, no paper in this literature analyzes
the relationship between public information and optimal taxation. To fix ideas, motivate our modeling choices, highlight the novel
contribution as well as compare our paper to existing ones, consider the following stylized social-learning setup: N players must
decide whether or not to invest in a project, the cost of which is denoted by c. The returns of the project depend on the realized
state of the world. If the state of the world is ‘‘high’’, the investment project yields a revenue equal to one. If the state of the world
is ‘‘low’’, the project is assumed to yield zero revenues. Players receive a binary signal concerning the realized state of the world.
Call a player who received a ‘‘low’’ signal a low-type player, while a high-type player received a ‘‘high’’ signal. After receiving their
signals, players compute their posteriors. Let the posterior of a low-type player be denoted by ml while mh denotes that of a high
type. Suppose comlomh. This parameter configuration either occurs because the investment cost is low, or because of a
‘‘favorable’’ prior. At time one, players simultaneously decide whether to invest or wait. If a player waits, she observes how many
other players invested at time one and takes a final investment decision at time two. If a player invests at time two, however, her
payoff gets discounted.

This set-up is plagued by multiple-equilibria. In one equilibrium, which is analyzed in the seminal paper of Chamley and Gale
(1994), high types randomize between investing and waiting while low types wait.4 As high types do not internalize their
information externalities, Gossner and Melissas (2006) have shown that in this equilibrium investments should be subsidized.5

Recall that coml. As a low-type player also faces a positive gain from investing, it is a best reply for her to invest (at time one) if
she expects all other N�1 players to invest as well. Hence, there also exists another equilibrium in which all players invest at time
one. In this equilibrium, some ‘‘wrong’’ types are investing (i.e. the low types) and thereby reduce the informational value of
overall investment activity. Gossner and Melissas highlight that a social planner can then raise welfare by taxing investments.6

The intuition should be clear: Through an appropriate investment tax, a social planner can reduce the profitability of investing
such that only high types face a positive gain from investing. In that case, low types wait and benefit from the information
externality. A model with a binary state and signal space is thus unable to generate unambiguous economic policy
recommendations when either public information is very conducive to investing—i.e. when the prior mean is ‘‘favorable’’—or
when the investment cost is ‘‘low’’. Below, we derive such unambiguous policy recommendations by replacing the unrealistic
assumption of binary returns of the investment project with the, in our view, more plausible assumption that the returns of
investing are normally distributed. We show that policymakers should tax investments when the public sentiment is that the
investment opportunities are highly beneficial.

Chamley (2004a) analyzes a two-player continuous (and unbounded) signals version of the binary return-to-
investment model and establishes the existence of multiple symmetric switching equilibria. Furthermore, Chamley
(2004b) establishes that a unique symmetric switching equilibrium exists if the discount factor is sufficiently high. He does
not, however, investigate the optimal tax policy, nor does he provide other sufficient conditions which guarantee a unique
equilibrium within the class of the symmetric switching strategies.

Recently, a global games approach (see Morris and Shin, 2003 for a survey) has been developed to overcome the
multiplicity of equilibria in various coordination settings—often with the aim of deriving policy recommendations. This
approach typically consists in enriching the type and state space and assuming that some ‘‘extreme’’ types possess a
‘‘dominant strategy’’. Some authors then derive sufficient conditions that guarantee a unique equilibrium outcome, while
others reduce the set of equilibrium outcomes. To keep the analysis tractable, many authors7 enrich the type and state
space by working with normally distributed random variables. In this paper, we also work with normally distributed

2 For an excellent overview, see Chamley (2004b).
3 Waiting games have, among others, also been analyzed by Chamley and Gale (1994), Gul and Lundholm (1995), Zhang (1997), Choi (1997, Section

4), Aoyagi (1998), Caplin and Leahy (1998), Frisell (2003), and Gunay (2008).
4 Strictly speaking, Chamley and Gale do not prove that it is optimal for low types to wait. Instead, they assume that low types do not possess an

‘‘investment option’’ and therefore cannot invest. But giving low types the option to invest does not destroy their equilibrium.
5 Doyle (2010) introduces idiosyncratic investment costs in such a set-up and—following Chamley and Gale (1994)—assumes that low types cannot

invest. High types invest if their investment costs lie below some critical level. In his model, the government cannot commit to a future tax/subsidy

scheme. Players might thus postpone their investment plans in the hope of enjoying higher subsidies in the future. Doyle also finds that investments

should be subsidized.
6 Levin and Peck (2008) introduce an idiosyncratic investment cost in the binary-return-to-investment set-up and show that a small investment

subsidy can reduce welfare for the same reason: It encourages some ‘‘wrong’’ types (i.e. those with bad private information about investment returns but

with low investment costs) to invest—thereby reducing the informational value of overall investment activity. They do not provide conditions that

guarantee the switching equilibrium is unique.
7 See, among others, Angeletos et al. (2007), Angeletos and Werning (2006), Dasgupta (2007) and Morris and Shin (1999, 2000, 2002, 2003, 2004,

2005).
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random variables when enriching the state and type space with the aim of predicting a unique symmetric switching
equilibrium. This enables us to derive clear policy recommendations for the case in which public information is sufficiently
favorable.

So far, only Dasgupta (2007) uses a global game approach in a social learning environment with the aim of predicting a
unique symmetric switching equilibrium. He considers a two-period irreversible investment model with a continuum of
players, exogenous observation noise, and positive network externalities. Dasgupta’s paper focuses on how the ability to
wait influences the extent of coordination failures in environments with positive network externalities and private
information. He does not investigate the relationship between public information and optimal tax policy.

3. The model

Two risk-neutral players have the possibility to invest in a risky project. Players can invest in two periods. If Player i

invests at time one, she gets a monetary payoff of y�t. Henceforth, we refer to y 2 R as the state of the world and t 2 R as
a temporary investment tax (t40) or subsidy (to0). If Player i invests at time two, she gets dy, where d 2 ð0;1Þ denotes
the common discount factor. Investments are irreversible. The state of the world y is randomly drawn from a normal
distribution with mean y and variance s2

y . In our model, the prior mean y captures public information that is available to
policy makers and investors alike. It can, for example, be high because many ‘‘stories’’, ‘‘studies’’, or ‘‘expert opinions’’ are
circulating that depict the investment opportunity as a ‘‘golden’’ one, or simply because past activity indicates a boom in
the industry. To model potential investors as being better informed, we suppose that Player i receives a normally
distributed private signal si concerning y’s realization. More precisely, we assume that si ¼ yþEi, where Ei is independently
drawn from a normal distribution with zero mean and variance s2

E .
The timing is as follows: At time zero, the government sets the period-one investment tax t. Thereafter, our waiting

game starts with nature drawing the state of the world and all signals. After observing the investment tax t and their
private signals, players at period 1 simultaneously decide whether to invest or wait. At the beginning of period 2, players
observe past investment choices. Any player who has not invested in period 1 then decides whether or not to invest in
period 2. Finally, players receive their payoffs and the game ends.

Our stylized model has some noteworthy features. First, we presume that investments are irreversible so that it applies
better to real investments than to financial ones in which transaction costs are considerably lower, and where market
prices may contain more information than observed past investment behavior. Second, we assume that a player who waits
observes the other player’s investment decision but not her investment return. In many instances, investment returns
realize a long time after the original investment decision has been made, and our model applies to the interim period. In
the fiber-optic case mentioned in the Introduction, for example, the returns depend on many future developments in the
telecommunications industry, which do not become publicly revealed after a firm’s decision to lay out these cables. Third,
we assume that the policy variable t either increases or decreases the returns from investing by some lump-sum amount.
One may thus think of t as a tax credit, or as a tax on the investment good itself. Furthermore, we will argue below that if
the optimal t is positive and small, the optimal policy can also be implemented by taxing profits.

Below, we refer to the expected state of the world conditional on a player’s signal as the player’s time-one posterior
mean, i.e. mi � Eðy9siÞ. Throughout we exclusively focus on equilibria in symmetric switching strategies. Player i is said to
follow a switching strategy if she invests at time one whenever her time-one posterior mean exceeds a critical threshold
value mc and refrains from investing otherwise. A pair of strategies is a symmetric switching equilibrium if, given that
Player j follows a switching strategy with critical threshold mn, one has (E1) it is strictly optimal for Player i to invest in
period one if and only if mi4mn ; and (E2) if Player i did not invest at time one, she does so at time two if and only if her
expectation of y (given mi and given Player j’s time-one decision) is positive.8 Below, equilibrium more generally refers to
Bayesian equilibrium.9 A type is said to be active at time two if she did not invest at time one.

4. Existence and uniqueness of switching equilibria in a laissez-faire economy

In this section, we characterize equilibrium cutoffs when the government does not intervene in the economy, i.e. when
t¼ 0. Let mLF denote the first-period equilibrium cutoff in a laissez-faire economy. We first establish properties of the best
response to a switching strategy. To do so, it is useful to consider the expected payoff difference between investing early
and delaying the investment decision. Let Dðmi,mc

j Þ denote the difference between the gain of investing in period 1 and the
gain of waiting as a function of Player i’s posterior mean mi under the assumption that Player j follows a switching strategy
characterized by mc

j . Thus,

Dðmi,mc
j Þ ¼ mi�d Prðmj4mc

j 9miÞ maxf0,Eðy9mi,mj4mc
j Þg�d Prðmjomc

j 9miÞmaxf0,Eðy9mi,mjomc
j Þg: ð1Þ

8 In Heidhues and Melissas (2010), we also prove that if the prior mean y is high enough, no asymmetric equilibrium in switching strategies exists.
9 In our model players with sufficiently high (low) signals strictly prefer to invest (wait) at time one, independent of the other player’s strategy.

Hence, there are no off-the-equilibrium-path observations and players can always apply Bayes’s rule so that any Bayesian equilibrium is consistent and

sequentially rational.
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If Dð�Þ40 Player i prefers to invest, while if Dð�Þo0 she prefers to wait. We first observe that a player who is more
optimistic regarding the state of the world has a bigger incentive to invest early. Formally

Lemma 1. A player’s incentive to invest early increases in her time-one posterior mean, i.e.

@Dðmi,mc
j Þ

@mi

40 8mc
j :

Lemma 1 states a common property of waiting games studied in the literature.10 To understand the intuition behind the
lemma, suppose Player i possesses a ‘‘very high’’ time-one posterior mean mi. She then has no incentive to wait. For she
would always invest at time two, even if she observes the other player waiting. Thus, if her time-one posterior mean
increases from ‘‘very’’ to ‘‘extremely’’ high, this leads to an increase in her opportunity cost of delaying the investment and
to an increase in the value of Dð�Þ. If her time-one posterior mean is ‘‘moderately’’ high or ‘‘simply’’ high instead, she only
refrains from investing at time two if she observes the other player waiting. If her time-one posterior mean increases from
‘‘moderately’’ to ‘‘simply’’ high, this leads to a decrease in the probability that she ascribes to the event ‘‘Player j will wait’’.
Hence, the higher a player’s time-one posterior mean, the lower her incentive to wait.

Lemma 1 implies that there exists a unique time-one posterior mean at which Player i is indifferent between investing
and waiting given that Player j follows a switching strategy characterized by mc

j . Formally, i’s cutoff mI
iðm

c
j Þ is implicitly

defined through the equation DðmI
i ,m

c
j Þ ¼ 0. (The superscript ‘‘I’’ stands for ‘‘indifferent’’.)

Suppose mi40 and that i expects j to always wait so that mc
j ¼1. Then, of course, j’s waiting decision bears no

informational content. Thus, the difference between the gain of investing early and the gain of waiting and investing late is
Dðmi,1Þ¼ ð1�dÞmi40. On the other hand, if mio0 and Player i expects Player j to always wait, Player i prefers not to invest.
Hence, in this case i invests in the first period whenever her time-one posterior mean is greater than zero and refrains
otherwise. Using a similar reasoning, if Player i expects j to always invest, j’s investment decision has no informational
content and thus mI

ið�1Þ¼ m
I
ið1Þ ¼ 0. Furthermore, mere inspection of Eq. (1) reveals that i’s best response cutoff mI

i is
continuous in mc

j . Lemma 1 thus implies that the cutoff mLF characterizes a symmetric switching equilibrium if and only
if mI

iðm
LF Þ ¼ mLF , or equivalently, DðmLF ,mLF Þ ¼ 0.11 Graphically, mLF is the point at which mI

iðm
c
j Þ crosses the 451 line. Since

mI
ið�1Þ¼ m

I
ið1Þ ¼ 0, and since mI

i is continuous in mc
j , a symmetric switching equilibrium exists.

We now investigate conditions that guarantee uniqueness. First, observe that a player who is indifferent between
investing and waiting must face a positive gain of investing. This implies that mLF 40. Because mLF oEðy9mi ¼ mLF , mj4mLF Þ a
player with time-one posterior mean mLF invests at time two after observing her fellow player investing. We next argue
that if mi ¼ mLF , Player i does not invest in period two after observing that Player j waited, i.e. Eðy9mi ¼ mLF ,mjomLF Þo0.
Given that j follows a switching strategy, observing him investing rather than waiting must make i more optimistic. Hence,
if i wants to invest after having observed that j waited, she must also want to invest after having observed that j invested.
In such a case she invests at time two independent of j’s time-one action. Her expected gain of waiting therefore is dmLF .
She is then better off, however, investing at time one and receiving an expected payoff of mLF .

Given this observation, we say that Player i receives ‘‘good news’’ when she observes j investing. Using that a cutoff type
invests in period two only when receiving good news, DðmLF ,mLF Þ simplifies to

DðmLF ,mLF Þ ¼ mLF�dPrðmj4mLF9mi ¼ mLF ÞEðy9mi ¼ mLF ,mj4mLF Þ ¼ 0: ð2Þ

Our analysis below makes use of some intuitive and well-known properties of the normal distribution (see the Appendix
for proofs). First, Player i’s first-period posterior mean mi is computed as

mi ¼ asiþð1�aÞy where a¼
s2
y

s2
yþs2

E
:

In words, mi is a weighted average between her private signal si and the prior mean y. The more precise the prior
information—i.e. the lower s2

y -the more weight Player i puts on the prior mean and the less weight she puts on her signal.
Conversely, the more precise her private information—i.e. the lower s2

E -the more she trusts her signal as opposed to the
prior mean. In particular, this implies that if the variance of the prior is infinite, or if the variance of her signal is zero, her
posterior mean is equal to her signal.

Second, Player i’s expectation of Player j’s posterior mean mj is computed as

Eðmj9miÞ ¼ amiþð1�aÞy:

Intuitively, Player i believes that j’s signal is distributed around her best guess of the true state of the world—i.e. her
posterior mean. Player i, however, also realizes that Player j’s posterior mean is a weighted average between j’s signal and
the prior mean, and therefore is likely to lie between i’s posterior and the prior mean. Based on this, a key fact we use
below is that if Player i’s posterior mean increases by one unit, her expectation about j’s posterior mean increases by less

than one unit. Hence, for example, the further her posterior mean lies above the prior mean, the more likely i thinks that j

10 See for example Hendricks and Kovenock (1989) and Chamley (2004b, Lemma 6.1, p. 124).
11 It follows from Lemma 1 that equilibrium condition E1 (see Section 3) is satisfied when DðmLF ,mLF Þ ¼ 0. Equilibrium condition E2 is also satisfied

because Eq. (1) prescribes Player i to make an optimal time-two choice.
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is more pessimistic than herself. Closely related, if the signal is (nearly) perfect—i.e. the variance of the signal is (close to)
zero—both players possess (almost) the same posterior. In that case Player i believes that she always (almost) lies in the
‘‘center of the world’’—i.e. independent of her posterior there is a 50% chance of j being more optimistic than herself. A
similar argument also applies with a completely uninformative prior—i.e. when the variance of the prior is infinite. In this
case j puts zero weight on the prior mean when computing his posterior. As i believes j’s signal to be distributed around
her posterior mean, she also always believes that she lies in the center of the world.

Third, conditional on having the cutoff posterior mean mLF , the probability that j’s posterior mean is greater than the
cutoff is

Prðmj4mLF9mi ¼ mLF Þ ¼ 1�Fðk1ðmLF�yÞÞ, ð3Þ

where F denotes the cumulative distribution function of the standard normal and where k1 is a positive constant
depending on the prior and signal variances. It follows from our second observation as well as the formula above that an
increase in mLF�y reduces the probability of j being more optimistic than the cutoff type i.

Fourth, we are interested in the cutoff type’s expectation about the state of the world when waiting and receiving good
news. In a symmetric switching equilibrium, Player i’s expectation will be based on her own signal, the prior mean, and the
fact that j invested and thus had a first-period posterior mean above the common cutoff mLF . Here our distributional
assumptions allow us to use known properties of the truncated normal distribution. Formally, in the Appendix we
establish that

Eðy9mi ¼ mLF ,mj4mLF Þ ¼ mLFþk2hðk1ðmLF�yÞÞ, ð4Þ

where k2 is a positive constant which (just as k1) depends on s2
y and s2

E , and where h represents the hazard rate
of the standard normal distribution. Recall that the hazard rate h is defined here as: hðxÞ � f ðxÞ=ð1�FðxÞÞ.12 Recall also
that the hazard rate of a normal distribution is increasing in x. Intuitively, Player i’s second-period expectation is the
first-period expectation about the state of the world plus an upward shift that depends on the cutoff, the prior mean, as
well as—through the constants—the variance of signals and the prior. We have seen above that the cutoff type’s
probability of getting good news decreases in the cutoff mLF . The above formula reveals that the impact of good news is
also higher for higher cutoffs. Formally, this follows from the fact that the hazard rate of the standard normal distribu-
tion is increasing and thus, the upward shift is greater. The statistical intuition is as follows: Player i’s belief of Player j’s
first-period posterior mean is normally distributed with—as we observed above—a mean that lies between i’s posterior
mean and the prior mean. As the cutoff increases, the expectation of Player j’s posterior mean increases by less than the
cutoff. Thus, if j invests he reveals that he lies in a higher quantile of this distribution. Since the expectation of a left-
truncated normally distributed variable is increasing in the truncation point, the higher the cutoff, the better the news
for the cutoff type when observing j investing. Consider now the case in which the variance of the prior goes to infinity.
As explained above, Player i then believes that she is in the ‘‘center of the world’’, i.e. there is, independent of her posterior,
a 50% chance that j possesses a higher posterior than herself. This implies that the upward shift does not depend on
the cutoff mLF . Mathematically, in the Appendix we show that k1 tends to zero as the variance of the prior goes to
infinity, while k2 converges to a positive constant. Thus in this special case the upward shift is independent of where the
cutoff lies.

Using Eqs. (3) and (4), we rewrite the equilibrium condition (2) as

mLF|{z}
Gain of investing

¼ d ½1�Fðk1ðmLF�yÞÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Prob of good news

mLFþ k2hðk1ðmLF�yÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Upward shift in beliefs

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Discounted gain of waiting

:

As mLF increases, there are two countervailing forces affecting the gain of waiting. On the one hand, the probability of
getting good news decreases. On the other hand, as mLF increases receiving good news leads to a greater upward shift
in beliefs. Indeed, the expected upwards shift ½1�Fð�Þ�k2hð�Þ ¼ k2f ð�Þ and therefore is non-monotone and unimodal.
Rearranging by moving the linear terms in mLF to the left-hand side and rewriting, yields

mLF ¼ k2X ðk1ðmLF�yÞÞ where X ð�Þ � df ð�Þ

1�dð1�Fð�ÞÞ
: ð5Þ

The left-hand side is linear in m. The right-hand side is positive and goes to zero as m goes to plus or minus infinity.
Furthermore, Lemma 3 in the Appendix formally establishes many properties of our X-function that are intuitive given
that its numerator is the p.d.f. of a normally distributed random variable. In particular, we prove that X is unimodal,
convex and increasing up to a critical value mm and thereafter concave and increasing up to its mode m̂. It is also easy to see

12 Throughout the paper, f denotes the p.d.f. of a standard normal distribution.
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that a unit increase in y leads to a translation to the right of X by one unit. This property is easiest to check when y
increases from zero to one. In that case Xðk1ð0�0ÞÞ ¼X ðk1ð1�1ÞÞ as illustrated in Fig. 1.13

As Fig. 2 illustrates, whenever the slope of k2X is greater than one, multiple symmetric switching equilibria can arise.
Intuitively, a low cutoff can be self-fulfilling since if mLF is low an agent’s expected upward shift is also low; this makes
waiting unattractive and thus induces players with low posterior means to invest early. If agents, however, expect a higher
cutoff the expected upward shift can be higher, making waiting in turn more attractive.

In the Appendix, we show that—for all -m the slope of k2X is less than one if and only if:

sy

sE

� �2

Z
1

2
½X 0ðZÞ�1� 8Z 2 R: ð6Þ

Recall from the above discussion and Fig. 1 that the maximal slope of X depends only on the discount factor and not on
other exogenous parameters. In the limit when players are perfectly impatient ðd¼ 0Þ, for example, X ð�Þ ¼ 0 everywhere
and, hence, the maximal slope of X also equals zero. Furthermore, in Lemma 3, which can be found in the Appendix, we
prove that the maximal slope of X tends to infinity as the discount factor d approaches one. Inequality (6) thus implies that
there exists a unique switching equilibrium if the variance of the public news s2

y is sufficiently high, or if either the
variance of the private signal s2

E or the discount factor d are sufficiently low.
Those three sufficient conditions are intuitive. Recall that if the variance of the prior is (infinitely) large, i believes j’s

posterior mean to be equally likely to lie above or below hers—independent of her posterior mean. The cutoff type’s
expected upward shift in this case is thus independent of her posterior mean. Hence, as the variance of the prior becomes
large, the expected upward shift tends towards a constant and therefore the slope of k2X tends to zero. Thus, for a high
enough variance of the prior, there exists a unique symmetric switching equilibrium. Similarly, as the agent’s signal
becomes infinitely precise (i.e. as s2

E-0) she believes that she is in the center of the world and the expected upward shift
tends to a constant. Thus, the symmetric switching equilibrium is also unique in this case. Furthermore, if the future
becomes heavily discounted the gain of waiting and the slope of k2X tend to zero, and thus the unique symmetric
equilibrium cutoff approaches zero in this case.

Of course, even if the maximal slope of k2X is greater than one, the symmetric switching equilibrium may be unique.
For example, if the gain of investing m crosses the function k2X in its right tail, i.e. when its slope is negative, the switching
equilibrium is unique. Similarly, if it crosses k2X where its slope is positive but sufficiently low, the symmetric switching
equilibrium will be unique. We have argued above that a unit increase in y leads to a translation by one unit to the right of
k2X . Hence, one can reduce y until the equilibrium condition (5) is satisfied in the decreasing part of k2X . Similarly, we
can increase y until m cuts k2Xð�Þ ‘‘far enough’’ in its left tail. Thus for sufficiently high or sufficiently low y, there exists a

Fig. 1. Shape of k2X ðk1ðm�yÞÞ for y ¼ 0 and y ¼ 1.

Fig. 2. Three different equilibria.

13 At the risk of stating the obvious, X ðk1ð0�0ÞÞ denotes the value of X ðk1ðm�yÞÞ when m¼ y ¼ 0.
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unique symmetric switching equilibrium. If the prior mean y even becomes arbitrarily large, m cuts k2X ð�Þ when m is
arbitrarily close to zero. (This is illustrated in Fig. 3.) Similarly, when the prior mean becomes arbitrarily negative, mLF also
tends to zero.

Finally, we argue that the symmetric switching equilibrium is unique if players are very patient. To see the intuition,

consider the limit case in which d¼ 1. In that case X ðk1ðm�yÞÞ simplifies to the reverse hazard rate of the standard normal

distribution.14 Hence in the limit case of perfectly patient agents, m and Xðk1ðm�yÞÞ cross each other once, as m is

increasing and X ðk1ðm�yÞÞ decreasing in m. In the Appendix, we extend this argument by showing that X ðk1ðm�yÞÞ is
decreasing in the relevant range if players are sufficiently patient. The following proposition summarizes the above
discussion:

Proposition 1. There exists a unique symmetric switching equilibrium if the parameters ðs2
y ,s2

E ,dÞ satisfy Inequality (6). If

Inequality (6) is violated, there exist values of y that support multiple symmetric switching equilibria. Multiplicity, however, only

arises for ‘‘intermediate’’ values of y. In particular, for any vector ðs2
y ,s2

E ,dÞ there exists a critical value yuo1 such that our

game has a unique symmetric switching equilibrium if yZyu, or if yr0. Furthermore, for any vector ðs2
y ,s2

E ,yÞ, there exists a

critical value do1 such that our game has a unique symmetric switching equilibrium if players are sufficiently patient (i.e. if

dZd). Finally, limy-�1 mLF ¼ limy-1 mLF ¼ 0.

Dasgupta (2007) also analyzes a dynamic game with social learning (see our literature review for more details) and
establishes uniqueness of the symmetric switching equilibrium if sy=sE is high enough. In our two-player model without
network externalities, we identify additional conditions that yield uniqueness. Chamley (2004b) analyzes a similar set-up
as ours and shows that the switching equilibrium is unique if the discount factor is sufficiently high. As we work with
normally distributed random variables, we were able to identify additional sufficient conditions.

In many applications, players observe each other frequently and can relatively quickly react upon observing a player’s
investment decision. Hence, in such situations the discount factor is high and our model yields a unique symmetric
switching equilibrium. Similarly, ‘‘boom’’ times are typically characterized by ‘‘stories’’ that depict some investment
opportunities as ‘‘golden’’ ones. Hence, in such a situation our model also yields a unique symmetric switching equilibrium
even if players observe each others actions only infrequently.

5. The social planner’s problem

In this section, we consider a social planner who chooses three cutoff levels: a time-one cutoff mc above which a player
invests at time one if (and only if) her time-one posterior mean exceeds it; a time-two cutoff m1 for the case in which her
fellow player invested at time-one; and a time-two cutoff m0 for the case in which her fellow player did not invest at time
one. At time two, a player invests if (and only if) her time-one posterior mean lies above the relevant time-two cutoff. The
social planner aims to maximize expected welfare W, which is defined as

W �

Z
Prðmi4mc ,mj4mc9yÞ2yf

y�y
sy

 !
dy

þ2

Z
Prðmi4mc ,mj 2 ½minfm1,mcg,mc�9yÞð1þdÞyf

y�y
sy

 !
dy

þ2

Z
Prðmi4mc ,mjominfm1,mcg9yÞyf

y�y
sy

 !
dy

þd
Z

Prðmi 2 ½minfm0,mcg,mc�,mj 2 ½minfm0,mcg,mc�9yÞ2yf
y�y
sy

 !
dy

þ2d
Z

Prðmi 2 ½minfm0,mcg,mc�,mjominfm0,mcg9yÞyf
y�y
sy

 !
dy: ð7Þ

The first integral captures the case in which both players invest at time one in which case welfare is equal to 2y. The
second integral captures the case in which one player invests at time one and thereby induces the other player to invest at

time two. The player who invests at time one gets y, the one who invests at time two dy. Observe that the second integral

equals zero if mc rm1. The third integral captures the case in which only one player invests at time one. The other player’s

(time-one) posterior is too low and she therefore never invests. In the fourth integral both players invest at time two.

Welfare then equals 2dy. Observe also that the fourth integral equals zero if mc rm0. Finally, in the last integral only one

player invests at time two. One can think of 1
2 W �U as the expected utility of a representative player in our model.

14 Recall that the reverse hazard rate of a standard normal distribution, r, is defined as: r� f ðxÞ=FðxÞ. As is well known, r is decreasing in x.
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It is useful to rewrite U in terms of the ex ante distribution of a player’s posterior. From the planner’s point of view, mi is
normally distributed with mean y and with some variance denoted by s2

m.15 Using this, in the Appendix we show that the
expected utility of the representative player can be rewritten as

U ¼

Z 1
mc

mif
mi�y
sm

 !
dmiþd

Z mc

minfm0 ,mcg

Prðmjomc9miÞEðy9mi,mjomcÞf
mi�y
sm

 !
dmi:

þd
Z mc

minfm1 ,mcg

Prðmj4mc9miÞEðy9mi,mj4mcÞf
mi�y
sm

 !
dmi ð8Þ

Eq. (8) is intuitive: The first integral represents the weighted expected utility of all types that invest at time one. Our
second integral captures Player i’s payoff in the case in which both players waited at time one; in this case a player invests
if her time-one posterior mean lies in the interval ½m0,mc� and she gets an expected payoff of dEðy9mi,mjomcÞ when
investing. The third integral captures the case in which Player i does not invest in period 1 but does so in period 2 when
receiving good news (mi 2 ½m1,mc�), which in turn happens with probability Prðmj4mc9miÞ.

We are now ready to analyze the optimal time-two cutoffs. Clearly, welfare cannot be raised by obliging a player to
forego a profitable investment opportunity at time two or by forcing a rational player to invest in the second period when
she believes this to be unprofitable. Hence, welfare-maximization implies that the critical investment type when getting
good news (m1) is implicitly defined by setting the expected second-period investment return to zero (i.e. through
Eðy9mi ¼ m1,mj4mcÞ ¼ 0). Similarly, the critical investment type when getting bad news (m0) is implicitly defined through
Eðy9mi ¼ m0,mjomcÞ ¼ 0.16 With a slight abuse of notation, m0 and m1 will henceforth denote the optimal time-two cutoffs.
Note that m0 and m1 depend on the time-one cutoff mc.

For which time-one cutoff mc is it optimal to have some active players invest in period two? Consider the cutoff type mc .
Suppose that the expected state of the world is negative for this cutoff type even when receiving good news, i.e. that
Eðy9mi ¼ mc ,mj4mcÞr0. As we established above, it is then optimal for the cutoff type to refrain from investing in period
two when getting good news—and because the cutoff type is the most optimistic type who waits, no other type wants to
invest in period two. Furthermore, as the expected state of the world is even lower when getting bad news, no type will
want to invest in period 2 whenever Eðy9mi ¼ mc ,mj4mcÞr0. Lemma 2 in the Appendix proves that there exists a unique
lower bound m such that Eðy9mi ¼ m,mj4mÞ ¼ 0, which implies that there is no time-two investments whenever mc om.
Because players become more optimistic when getting good news, it is obvious that the lower bound is negative, i.e. mo0.

When mc 4m, the social planner instructs the cutoff type who receives good news to invest as her expectation of the
realized state of the world is then positive (Eðy9mc ,mj4mcÞ40). If mc , however, is close to m, the expected state of the world
when getting bad news is still negative for the cutoff type. Hence, no active type will be instructed to invest when getting
bad news. When mc is high enough, even when getting bad news the expected state of the world is positive
(Eðy9mc ,mjomcÞ40). Active types close enough to mc will then optimally invest at time two when getting bad news. As
these types are even more optimistic when getting good news, they will also invest in that case. Lemma 2 in the Appendix
proves the existence of a unique upper bound m such that Eðy9mi ¼ m,mjomÞ ¼ 0, which implies that active types will
refrain from investing when getting bad news if and only if mc om. Since bad news makes a player more pessimistic,
observe that m40.

To summarize, if the social planner implements a very low cutoff (i.e. if mc om), no one invests at time two and thus the
utility of the representative agent is

8mc rm, U ¼

Z 1
mc

mif
mi�y
sm

 !
dmi:

If mi 2 ½m,m�, on the other hand, some active types invest at time two if they receive good news but everyone refrains from
investing when getting bad news. Hence

8mc 2 ½m,m�, U ¼

Z 1
mc

mif
mi�y
sm

 !
dmiþd

Z mc

m1

Prðmj4mc9miÞEðy9mi,mj4mcÞf
mi�y
sm

 !
dmi: ð9Þ

For mc 4m, some active types will invest when getting either bad or good news while others invest only when getting
good news.

15 In Section 4, we argued that i’s posterior mean mi is a weighted average between her signal and the prior mean. Formally, mi ¼ asiþð1�aÞy (where

a 2 ½0;1� depends on the prior and signal variances). By assumption si ¼ yþEi, where y�Nðy ,s2
y Þ and Ei �Nð0,s2

E Þ. As Ei is independent of y, from the

planner’s point of view si �Nðy ,s2
yþs

2
E Þ. Hence, mi is the sum of a normally distributed random variable (multiplied by a) with mean y and a constant (i.e.

ð1�aÞy). This implies that mi �Nðy ,s2
mÞ, where s2

m ¼ a2ðs2
yþs

2
E Þ.

16 Lemma 2 in the Appendix formally establishes that for any first-period cutoff mc , there exist unique second-period cutoffs m0 and m1, and that the

expectations Eðy9mi ,mj 4mcÞ and Eðy9mi ,mj omcÞ are increasing in mi . Hence, Player i should invest at time two if (and only if) her time-one posterior mean

lies above the relevant cutoff.
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Let mSP denote the first-period cutoff that maximizes U. We now argue that mSP 4m. Suppose otherwise, i.e. that
mSP rmo0. In this case the expected utility of the representative player equalsZ 1

mSP

mif
mi�y
sm

 !
dmi:

Because mSP o0, the social planner can raise welfare by setting mSP ¼ 0—a contradiction. Thus mSP 4m. This result allows us
to prove that the social planner will choose a higher than the laissez-faire cutoff when the prior mean is sufficiently high.

Recall from our previous section that, in a Bayesian equilibrium without taxes, no active type invests at time two if no
one invested at time one, i.e. mLF om.17 Furthermore, mLF 40 as players with a non-positive posterior mean prefer to wait.
Hence, mLF 2 ðm,mÞ. It follows from Eq. (9) that 8mc 2 ½m,mLF �

dU

dmc
¼�½mc�d Prðmj4mc9mcÞEðy9mc ,mj4mcÞ�f

mc�y
sm

 !
�d

dm1

dmc
Prðmj4mc9mÞEðy9m1,mj4mcÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

¼ 0

f
m1�y
sm

 !

þd
Z mc

m1

@

@mc
ðPrðmj4mc9miÞEðy9mi,mj4mcÞÞf

mi�y
sm

 !
dmi:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Weighted change in the inframarginal types0 gain of waiting

ð10Þ

For any given first-period cutoff, recall that the socially optimal cutoff m1 is implicitly defined through Eðy9mi ¼ m1,
mj4mcÞ ¼ 0. Hence, the second term of the right-hand side equals zero. The term between square brackets represents
Dðmc ,mcÞ, i.e. the difference between the cutoff type’s gain of investing early and her gain of waiting. Suppose that
mc ¼ mo0. By definition of m this means that the cutoff type mc is indifferent between investing and not investing in case
she gets good news. Hence, one can think of her as someone who will not invest at time two—independent of the other
player’s time-one decision. In that case her gain of waiting is zero and Dðm,mÞ ¼ mo0. Suppose now that mc ¼ mLF . As the
cutoff player is indifferent between investing and waiting, DðmLF ,mLF Þ ¼ 0. If equilibrium is unique—as is the case if the
prior mean is sufficiently high18—there exists no other cutoff mcamLF such that Dðmc ,mcÞ ¼ 0. By continuity, the term
between square brackets (i.e. excluding the minus sign in front) is thus negative if equilibrium is unique and if mc 2 ½m,mLF Þ.
Hence, if the prior mean is sufficiently high, and if the social planner implements a cutoff mc omLF , then the first term on
the right-hand side (i.e. including the minus sign in front) is positive. Using (10), we thus conclude that 8mc 2 ½m,mLF �,
dU=dmc 40 if the prior mean y is sufficiently high and ifZ mc

m1

@

@mc
½Prðmj4mc9miÞEðy9mi,mj4mcÞ�f

mi�y
sm

 !
dmi40: ð11Þ

We now argue that if the prior mean y is high enough, then the above inequality is satisfied. To build some intuition, we
first explain how Player i’s gain of waiting is influenced by the cutoff mc . Suppose mi 2 ½m1,mc� in which case Player i invests
at time two if the other player did so at time one. In the Appendix (see proof of Proposition 2), we prove that

@

@mc
½Prðmj4mc9miÞEðy9mi,mj4mcÞ�403ð1�aÞy�mi4mc : ð12Þ

Stated differently, Player i’s gain of waiting is unimodal: It increases until mc ¼ ð1�aÞy�mi and decreases thereafter. To
understand the unimodality of Player i’s gain of waiting, observe that the above derivative is equal to

@Prðmj4mc9miÞ

@mc
Eðy9mi,mj4mcÞþPrðmj4mc9miÞ

@Eðy9mi,mj4mcÞ

@mc
:

The first term of this sum is negative, while the second one is positive. Recall from our discussion of Eq. (4) that a player’s
expectation of the state of the world when receiving good news is the sum of her time-one posterior mean and an upward
shift. Furthermore, if the critical time-one cutoff mc is low, both mc and the upward shift are small, and hence the first term
in the above sum is not very negative. In addition, if mc is low, it is very likely that the other player will invest early. Hence,
any increase in Player i’s upward shift is multiplied by a large number, so that the second term in the above sum is large.
Hence, if mc is low the above derivative is positive. In other words, if mc is low, Player i wants the social planner to raise the
cutoff as the decrease in the probability of getting good news is more than compensated by the increase in her upward
shift. The contrary situation prevails when mc is high: Player i then prefers the cutoff to be lowered in order to increase her
probability of getting good news.

17 Using the same reasoning as in Section 4, it is straightforward to prove that the inequality ðmLF omÞ is strict: Suppose mLF ¼ m . If the cutoff type mLF

receives bad news, she is indifferent between investing and not investing. One can thus think of her as investing at time two—independent of the other

player’s decision. But then she is better off investing early and saving on the discounting cost.
18 See Proposition 1.
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To further understand the change in the active types’ gain of waiting, let mmax
i denote the cutoff (above which Player j

invests) that maximizes type mi’s gain of waiting. It follows from (12) that

mmax
i ¼ ð1�aÞy�mi: ð13Þ

Suppose Player j invests. This reveals to Player i that mj4mc . Now recall from the previous section that mj9mi is normally
distributed with mean amiþð1�aÞy. Thus the higher y, the less ‘‘good news’’ is contained in the observation that Player j invested,
and hence the lower is Player i’s upward shift. Similarly, the higher the type mi, the greater the expectation that Player j invests,
and the smaller the upward shift when observing Player j investing. Nevertheless, Eq. (13) reveals that mmax

i is decreasing in her
posterior mean mi. To understand why, recall that Player i only invests at time two if Player j did so at time one. Hence, the higher
mi the more Player i ‘‘fears’’ that Player j will not invest at time one. Stated differently, if mi increases Player i prefers the cutoff mc

to be reduced to increase the likelihood of j investing even if this comes at the cost of a lower upward shift.
Now, suppose that

ð1�aÞy�mLF 4mLF : ð14Þ

Economically, this inequality states that the cutoff-type of Player i in a laissez-faire economy thinks that the cutoff mLF of
Player j is too low. Hence, if this condition holds the gain of waiting of the cutoff type mi ¼ mLF is increasing in the other
player’s first-period cutoff. In this case the marginal type and—because the gain of waiting is increasing in the cutoff for
low types miFall inframarginal types prefer a cutoff above the laissez-faire one. Hence, Inequality (14) implies that
Inequality (11) must hold. Whenever this is the case, we already argued that it is optimal to raise the first-period cutoff.
Finally, recall from Section 4 that the laissez-faire cutoff tends to zero as the prior mean y goes to infinity, which implies
that Inequality (14) is indeed satisfied, and hence it is optimal for the social planer to implement a higher period-one
cutoff. We summarize these insights in our next proposition.

Proposition 2. Suppose that the prior mean y is high enough. The social planner’s optimal period-one investment cutoff is then

strictly higher than in the laissez-faire economy mSP 4mLF . Any period-one investment cutoff mc omLF yields then a lower welfare

than the one which prevails in a laissez-faire economy. There exists then an E40 such that for all time-one cutoffs mc satisfying

mc�mLF 2 ð0,EÞ, welfare is strictly greater than in the laissez-faire economy.

Proposition 2 extends intuition about the insufficient use of private information derived in the original herding papers
(see Banerjee, 1992 and Bikhchandani et al., 1992) to an endogenous queue set-up. In an informational cascade, Player i

gets say sufficiently good public information about the returns from investing, which arises when enough predecessors in
a queue decide to invest, so that she follows the public information and invests even when possessing an unfavorable
private signal. This investment decision is typically socially inefficient as it impedes subsequent movers to infer this
player’s signal from her action. A similar inefficiency also arises in our model: When stories about the high profitability of
an investment opportunity abound (i.e. if y is sufficiently high), an inefficiently high mass of types end up investing early,
making it harder for players who wait to confidently infer that the state of the world is indeed conducive to investing.

Unfortunately, policy recommendations are harder to derive when the prior mean y is not sufficiently high as
inframarginal types then disagree among themselves.19 Types with ‘‘very’’ negative time-one posterior means experience a
huge upward shift upon observing their rival investing at time one, which induces them to invest at time two. Increasing
the cutoff increases the upward shift dramatically and thus overcompensates the lower probability of getting good news
for these types. A higher inframarginal type’s upward shift, however, is increased by less and for such a type the lower
probability of getting good news dominates. This implies that they prefer the social planner to reduce mLF . The social
planner thus faces a tradeoff in this case: she needs to weigh the benefit of a decrease in mLF for some inframarginal types
against the losses for other inframarginal types. As this exercise is analytically demanding, we have not been able to prove
that a (strictly positive) subsidy is optimal when the prior mean is sufficiently low. In the Appendix (see proof of Lemma 5),
however, we show that

lim
y-�1

mLF|{z}
Equilibrium cutoff

¼ 0¼ lim
y-�1

ð1�aÞy�m1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Type m1 0s preferred cutoff

:

Hence, in the limit the inframarginal type with the lowest posterior mean (i.e. type m1) is perfectly happy with the cutoff
mLF . It then follows from (13) that all the other inframarginal types (i.e. all types mi 2 ðm1,mLF �) think that the laissez-faire
cutoff is too high. Their gain of waiting would be higher if the social planner were to implement a lower cutoff. This result
implies that if the social planner implements a cutoff mc 4mLF , there exists some critical prior mean y

c
such that if yoy

c

the social planner could raise welfare by reducing the cutoff mc. This result also implies that, as y goes to minus infinity,
mSP rmLF . To summarize:

Proposition 3. Any time-one cutoff mc 4mLF is suboptimally high if y lies below some threshold y
c
ðmcÞ.

19 This is proven in Lemma 4 for the case in which the prior mean y is negative.
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6. Implementation

We now discuss how a social planner that selects first- and second-period taxes can implement the optimal investment
cutoffs. In our previous section we argued that the time-two cutoffs m0 and m1 for any given period-one cutoff should be
chosen such that no profitable investment opportunity is wasted at time two, i.e. Eðy9mi ¼ m0,mjomcÞ ¼ 0 and
Eðy9mi ¼ m1,mj4mcÞ ¼ 0. Hence the optimal second-period tax is zero. Thus, in the remainder of this section we analyze
the optimal time-one tax. A tax t is said to implement a first-period cutoff mc if there exists a symmetric switching
equilibrium with the property that mn ¼ mc .

We have established in Section 5 that the social planner sets a cutoff mc that induces some types who wait to invest
when getting good news, i.e. that mSP 4m. Intuitively, this ensures that a meaningful information externality remains. We
thus restrict attention to cutoffs mc 4m. Note also that mLF om since in the laissez-faire equilibrium a period-one cutoff
type invests in period two if and only if she gets good news, while for cutoffs above m a period-one cutoff type also invests
in period two when getting bad news.

Suppose the social planner wants to implement a cutoff mc 2 ½m,m� so that the cutoff type mc invests at time two if and
only if the other player did so at time one. Then the cutoff type is indifferent between investing and waiting if

mc�t¼ dPrðmj4mc9mi ¼ mcÞEðy9mi ¼ mc ,mj4mcÞ: ð15Þ

Recall from Eqs. (3) and (4) that

Prðmj4mc9mi ¼ mcÞ ¼ 1�Fðk1ðmc�yÞÞ ð16Þ

and that

Eðy9mi ¼ mc ,mj4mcÞ ¼ mcþk2hðk1ðmc�yÞÞ: ð17Þ

Using (16) and (17), the indifference Eq. (15) can be rewritten as

mc�
t

1�dð1�Fðk1ðmc�yÞÞÞ
¼ k2X ðk1ðmc�yÞÞ: ð18Þ

The right-hand side of the indifference equation above was analyzed in Section 4. Observe that if t¼ 0, the indifference
condition boils down to (5). Call LHS the left-hand side of the above equation after replacing mc with m and observe that
LHS is continuous in m, and that it goes from minus to plus infinity as m goes from �1 to þ1. Observe also that LHS

always lies above m if t is negative. If t is positive, however, LHS always lies below m. This implies that if the symmetric
switching equilibrium is unique in the laissez-faire economy, and if the social planner wants to raise the equilibrium cutoff
(i.e. if mSP 2 ðmLF ,mÞ), he must tax investments. (This case is illustrated in Fig. 3.) Conversely, if the symmetric switching
equilibrium is unique in the laissez-faire case and the social planner wants to implement a cutoff mSP 2 ðm,mLF Þ, he must
subsidize investments.

One can rewrite the equilibrium condition (18) as

t¼ ½1�dð1�Fðk1ðmc�yÞÞÞ�mc�k2df ðk1ðmc�yÞÞ: ð19Þ

The social planner can thus implement any mc 2 ½m,m� by setting t equal to the right-hand side of the above equation.20

Using Eq. (19), it is straightforward to show that if yo0 and if mc 2 ðmLF ,m�, @t=@mc 40.21 Hence, if the prior mean y is
negative and if the social planner wants to implement a cutoff lower than mcð4mLF Þ, she should reduce the tax t. Recall
from Proposition 3 that for any cutoff mc 4mLF there exists a critical y

c
ðmcÞ such that the social planner can raise welfare by

implementing a lower cutoff if the prior mean y is less than y
c
ðmcÞ. Both results thus imply that for any positive tax t there

exists a critical y
c
ðtÞ such that if yoy

c
ðtÞ, the social planner can raise welfare by reducing the investment tax.

Suppose now that the social planner wants to implement a cutoff mc 4m4mLF . It then follows from our previous section
that the cutoff type mc will invest at time two—independent of the other player’s time-one action. Hence, in this case the
cutoff type is indifferent between investing and waiting if mc�t¼ dmc . Any mc 4m can thus be implemented by choosing t
such that t¼ ð1�dÞmc 40, where the inequality follows from the fact that mc 4m40.

An important caveat, however, is that a given t need not uniquely implement mSP . To understand this, consider Fig. 3. In
the figure, the prior mean y is implicitly assumed to be ‘‘high’’. (This explains why in the figure the median of X is drawn
so much to the right and—as explained in Section 4—why mLF is close to zero.) As summarized in Proposition 2, if the prior
mean is high enough, the equilibrium cutoff mLF is too low. (This is illustrated in Fig. 3 by the fact that mLF omSP .) The figure
also shows that if investments are appropriately taxed (i.e. if t¼ t0), there exists a symmetric switching equilibrium in
which players coordinate on the efficient time-one cutoff mSP . In the figure, however, there also exists another symmetric
switching equilibrium in which a player invests if and only if her time-one posterior mean exceeds ~m. In this case the
investment tax t0 actually deters too many types from investing.

20 It is straightforward to check that Lemma 1 remains true after introducing a lump-sum tax t in our model. Hence, if t is chosen such that Eq. (19) is

satisfied, Player i is indifferent between investing and waiting if and only if her posterior mean is equal to mc , while she prefers to wait if and only if her

posterior mean is less than mc .
21 Implicitly, we also use our earlier result that 0omLF .
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If players focus on this latter equilibrium, the investment tax t0 may even decrease welfare as compared to the
prevailing one in a laissez-faire economy. Recall, however, from Proposition 2 that if the prior mean is high enough, the
switching equilibrium is unique and a small increase in the equilibrium cutoff increases welfare. Thus, if the prior mean is
high enough (i.e. if k2X lies sufficiently to the right as is the case in Fig. 3) there exists a value of mc 4mLF such that the
switching equilibrium remains unique and welfare is higher under cutoff mc than under cutoff mLF . Hence, even if the social
planner anticipates that players will focus on cutoff ~m instead of mSP in case t¼ t0, it is still optimal for him to tax
investments. (Of course, the tax will have to be smaller than t0.) Our main findings are summarized below.

Proposition 4. If the prior mean is high enough, it is optimal to tax first-period investments. Suppose t40. Then there exists a

critical value y
c
ðtÞ such that if yoy

c
ðtÞ, the social planner can raise welfare by reducing the investment tax t. Furthermore, any

socially optimal cutoff mSP can be implemented through an appropriate first-period investment tax/subsidy t and a second-period

investment tax of zero. Implementation, however, need not be unique.

According to the (perhaps recent) conventional wisdom, governments should not intervene in the presence of an investment
bubble as one cannot ex ante know whether it is due to fundamentals (corresponding to the case in which y40 in our model) or
whether it is the result of incorrect stories. Alan Greenspan’s quote in our introduction, for example, nicely illustrates the wisdom
that prevailed in 1999. Our model questions this rationale for non-intervention: Even if policymakers in contrast to market
participants receive no private signal about the state of the world, the policymakers’ knowledge of y can still be used to improve
welfare.22 In particular, in the presence of sufficiently favorable public information, investments should be taxed.

More broadly, Propositions 2 and 3 are consistent with the idea that investment policy should be countercyclical: when
y is high (which is likely to occur when many players have invested in the previous period(s)), investments should be
taxed, while if y-�1 (i.e. when expected investment activity is zero) investment should not be taxed.

We allow the tax t to be set conditional on the public information. In practice, the existing information in the public
domain needs to be interpreted and this can be difficult.23 The exact process of how this is done—e.g. through public
hearings or a special committee—is not crucial for our results as long as policy makers do not have access to information
that remains hidden from investors. If policy makers have information that is unavailable to investors, the selected tax rate
could signal the state of the world, an aspect our modeling approach abstracts from.24

Insofar as investments into new technologies are concerned, it is natural to presume that tax or subsidy rates are technology
specific. Most industrialized countries—including the US—are actively pursuing industrial policies. Policy makers try to identify
and encourage investments into promising technologies or ‘‘strategically important’’ industries. Similarly, they often encourage
the adoption of certain technologies, such as solar panels. The amount of tax breaks or subsidies investors receive depends on the
presumed need or the individual profitability, which corresponds to the state of the world in our stylized set-up.

So far, we assumed that the social planner can freely change the investment tax/subsidy between the two periods. In
general, one would not expect the government to frequently change investment policy on the basis of the latest
investment activity. We only made this assumption, however, to simplify the analysis of the optimal cutoffs. In particular,
we have shown that even if the investment tax has to be kept fixed for both periods, it remains optimal to tax investments
whenever the prior mean is sufficiently high. Intuitively, if the social planner raises the investment tax t from zero to E, she
raises the first-period equilibrium cutoff which increases welfare. An increase in the investment tax t, however, also

Fig. 3. Non-unique implementation of mSP .

22 Greenspan was primarily worried about the existence of an investment boom in the U.S. stockmarket, i.e. in a context in which prices may

aggregate information. As our model is void of any price mechanism, we cannot address the question whether one should interfere in the stockmarket.

We feel, however, that (perhaps until recently) the vast majority of policy-makers would agree (or would have agreed) with Greenspan even in a fixed-

price context. For example, it is often argued that the state should not intervene into technology adoption or development decisions as the private sector

has more information regarding appropriate technologies. Our model highlights that even a less informed policy maker may want to interfere after all.
23 Alternatively, one can try to find a real-life proxy for y and make t contingent on that proxy. Finding a good proxy, however, is challenging. Past

investment activity, for example, is an imperfect proxy for y: A past investment boom may indeed indicate a high realization of y. It may, however, also

be due to the fact that players use low cutoffs.
24 The optimality of taxing strictly better informed investors is also theoretically more surprising than it would be in an environment in which the

policy maker has private information that is hidden from investors.
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distorts time-two investment decisions. This welfare loss, however, is a second-order effect. Furthermore, we have also
shown that the issue of non-unique implementation disappears with permanent taxes.25 To be more specific, if the
investment tax is the same in both periods, and if the prior mean is sufficiently high, the constrained-optimal symmetric
time-one cutoff can be uniquely implemented by appropriately choosing the appropriate permanent investment tax.

We stated our results in terms of a social planner who taxes or subsidizes the investment activity itself.26 Alternatively
to taxing investment itself a social planner can also steer the incentives to invest by altering the tax rate on the resulting
profits. She could, for example, commit herself to tax future profits at a certain rate t 2 ð0;1Þ. In principle, the rate t can
depend on the investment date. A firm’s tax bill is then proportional to the amount of profits she is making. If she turns a
loss, however, she pays no taxes. Player i’s tax bill is thus equal to

R1
0 tyf ðy�miÞsm

� �
dy. A profit tax t implements mSP 4mLF

if (i) DðmSP ,mSPÞ ¼ 0 and if (ii) Player i prefers to wait if and only if her posterior mean is less than mSP . It can be shown that
requirement (i) can be satisfied: There always exists a tax rate t 2 ð0;1Þ such that the cutoff type mSP 4mLF is indifferent
between investing and waiting given that the other player uses the cutoff mSP . Requirement (ii), however, need not be
satisfied with a profit tax. Intuitively, with a profit tax more optimistic players expect to pay ahigher tax bill if they invest
at time one. By assumption they do not pay any taxes if they invest at time two. A player with a posterior mean mi4mSP

may therefore strictly prefer to wait. Nevertheless, it is easy to show that if the tax rate t is sufficiently small, condition (ii)
is satisfied. Hence, the main implication of Proposition 4 remains unchanged: If the prior mean is sufficiently high, the
introduction of a small profit tax t improves welfare.

Finally, in our model it is sometimes optimal to tax investments because the increase in the cutoff leads to an upward
shift in beliefs. This upward shift is due to our assumption that Player i only observes whether or not Player j invested. If
investment by Player j would immediately reveal the state of the world, the updating process would be different. We
conjecture that because players do not internalize the information externalities of investing early, investments in this case
should always be subsidized.27

7. Final remarks

We analyzed some policy implications of social learning when players are fully rational and better informed than the
policymaker. Our model is particularly useful when public information is conducive to investing—which typically happens
during ‘‘boom times’’ or when many ‘‘stories’’ circulate praising the profit prospects of the investment opportunity. In this
case, we establish that, in a laissez-faire economy, too many types are investing early and investments should therefore
be taxed.

We have chosen a two-player set-up for our model. The general N player game is difficult to analyze.28 One ‘‘simple’’
alternative, however, would be to consider a model with a continuum of players. In that variation, for any given symmetric
equilibrium cutoff, social learning would be perfect and hence a laissez-faire policy optimal. To circumvent this unrealistic
feature, one needs to assume social learning to be imperfect. One possibility is to assume observational noise as in
Chamley (2004a) or Dasgupta (2007). In such a setup, Player i’s distribution about the other players’ posterior means (i.e.
f ðmj9miÞ) would still be computed in the same way as in our two-player model. Therefore, if the prior mean is ‘‘very high’’,
an inframarginal type expects—for ‘‘many’’ realizations of the state of the world—a large mass of players to invest at time
one. As noisy observation of past investment behavior is then expected to reveal relatively little information about the
realized state of the world, we conjecture that—as in our model—the inframarginal types prefer the social planner to raise
the equilibrium cutoff via taxes. One drawback of such an approach, however, is that the observational noise is completely
exogenously specified. An alternative assumption is that each player can only observe some (neighboring) players’ first-
period decisions.29

In our model information can only be transmitted through actions. As there are no payoff externalities, it is natural to ask
why information cannot be transmitted through words instead. If players can fully exchange their private information via
cheap talk, an efficient equilibrium of course exists. We feel, however, that this simple argument is misleading as
communication—even where allowed and feasible—is often imperfect. Suppose, for example, that player one is asked to
reveal her type to the other player(s) prior to the waiting game. As her signal is imperfect, she also wants to learn the other
player(s)’ signal(s). She therefore has an incentive to send the message which maximizes her gain of waiting. In an analysis of
cheap talk, Gossner and Melissas (2006) have shown that this game may—depending on the values of the parameters—be
characterized by a unique monotone equilibrium in which all types send the same message, i.e. information can only be

25 The formal result is contained in the working paper version (Heidhues and Melissas, 2010).
26 In our model, y should be interpreted as the gross expected profits from the investment project minus the expected investment cost. Governments

often promote investments by subsidizing the investment cost. It may, for example, offer a grant that covers R&D expenses or offer a tax break

proportional to the investment cost. If Player i invests, she thus gets mi�t, where tðo0Þ represents the subsidy on the investment cost. Conversely, a

government can use a non-refundable sales tax to increase the investment cost by some lump-sum amount. And if the investment requires a particular

input—such as public land, mining rights, or a permit—the government can also simply affect the investment cost directly.
27 We also conjecture that a similar subsidization result would hold if a player’s signal were to become common knowledge once she invests.
28 We have been able to establish, however, that equilibrium is unique with N players when the state of the world y is drawn from a Laplacian

distribution. Again, the proof is available upon request.
29 Our model, for example, can be seen as a special case in which countably many players live on a circle and each player only observes her right-

hand neighbor.
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revealed through actions. More generally, we believe the study of waiting games in the presence of imperfect communication
to be an interesting avenue for future research.

Another noteworthy aspect of our model is that investment costs are exogenous.30 In many applications in which
policymakers are concerned about investment bubbles—such as stock market or housing market bubbles—one would
expect investment costs to increase in the number of present and past investments. In an exogenous queue model with
a competitive market maker, Park and Sabourian (2011) establish that herding is possible even if markets are
informationally efficient. An interesting question for future research is how these results extend to an endogenous queue
setting and whether it is also optimal to tax investments during boom times in such a model.

We assumed that players are fully rational. Eyster and Rabin (2010) nicely highlight some counterintuitive features of
the rational learning model in an exogenous queue environment and propose a plausible alternative learning model. An
interesting question is whether the introduction of inferentially naive and/or cursed players strengthens or qualifies our
‘‘taxation during booms’’ result in an endogenous queue environment.
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Appendix A

A.1. Definitions and preliminaries

Throughout the appendix F, f, h, and r represent, respectively, the c.d.f., the p.d.f., the hazard rate � f ð�Þ=ð1�Fð�ÞÞ
� �

, and
the reverse hazard rate � f ð�Þ=Fð�Þ

� �
of the standard normal distribution. We will also use the following notations:

a� s2
y=ðs

2
yþs

2
E Þ, b� ð2=s2

E Þ=ð1=s2
yþ2=s2

E Þ, s2
p � s2

ys
2
E=ðs2

yþs
2
E Þ, s2

2 � s2
pþs2

E , s2
o � a2s2

2, s2
m � a2ðs2

yþs
2
E Þ, k1 � ð1�aÞ=so, k2 �

1
2bs2, xðmc ,miÞ � ðmc�ami�ð1�aÞyÞ=so, X ðZÞ � df ðZÞ=ð1�dð1�FðZÞÞÞ, gðmÞ � m�k2X ðk1ðm�yÞÞ, and fðmÞ � mþk2hðxðmn,mÞÞ.

In our set-up (see DeGroot, 1970 for proofs) y9si �Nðmi,s2
pÞ, where

mi ¼ asiþð1�aÞy: ð20Þ

As Ej is independent from y and Ei, sj9si ¼ y9siþEj. As Ej �Nð0,s2
E Þ, sj9si �Nðmi,s2

pþs2
E Þ. Furthermore, mj ¼ asjþð1�aÞy, and

thus

mj9si �Nðamiþð1�aÞy,s2
oÞ: ð21Þ

Hence

Prðmj4mn9miÞ ¼ 1�F
mn�ami�ð1�aÞy

so

 !
ð22Þ

and

Prðmj4mn9mi ¼ mnÞ ¼ 1�Fðk1ðmn�yÞÞ:

Lemma 2. If signals and the state of the world are drawn from Normal distributions

1. Eðy9mi,mj4mcÞ and Eðy9mi,mjomcÞ are increasing in mi and mc .
2. One has

Eðy9mi,mj4mcÞ ¼ miþk2hðxðmc ,miÞÞ and

Eðy9mi,mjomcÞ ¼ mi�k2rðxðmc ,miÞÞ:

3. For any first-period cutoff mc , there exist unique-second period cutoffs m0 and m1 such that Eðy9mi ¼ m0,mjomcÞ ¼ 0 and

Eðy9mi ¼ m1,mj4mcÞ ¼ 0.

30 See also the discussion in Footnote 22.
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4. There exists a unique mo0 such that Eðy9m,mj4mÞ ¼ 0. There also exists a unique m40 such that Eðy9m,mjomÞ ¼ 0. If

mc om, no active type invests at time two. If mc 4m, some active types invest at time two even if no one did so at time one. If

mc 2 ðm,mÞ, an active player only invests at time two if she received good news.

Proof. We first prove points 1 and 2 of the lemma. A well known statistical result (see DeGroot, 1970 for a proof) is that if
y�Nðy,s2

yÞ and if Ei �Nð0,s2
E Þ, then y9si,sj also tends to a normal and

Eðy9si,sjÞ ¼ b
siþsj

2
þð1�bÞy: ð23Þ

We first tackle the case in which mj4mc. It follows from (20) that mj4mc3sj4sc � ðmc�ð1�aÞyÞ=a. One has

Eðy9mi,mj4mcÞ ¼

Z
b

siþsj

2
þð1�bÞy

� �
f ðsj9si,sjZscÞ dsj,

¼
b
2

siþ
b
2

Eðsj9si,sj4scÞþð1�bÞy: ð24Þ

From the explanations provided after (20), we know that sj9si,sj4sc is a left-truncated normal distribution with mean mi,
variance s2

2 and truncation point sc. Using Johnson et al. (1995) to calculate the expectation of a truncated normal variable,
one has

Eðsj9si,sj4scÞ ¼ miþh
sc�mi

s2

� �
s2: ð25Þ

Replacing sc by ðmc�ð1�aÞyÞ=a and taking into account that s2
o ¼ a2ðs2

pþs2
E Þ ¼ a2s2

2, allow us to rewrite (25) as
Eðsj9si,sj4scÞ ¼ miþhðxðmc ,miÞÞs2. Inserting this last equality into (24), and taking into account the fact that mi ¼ asiþð1�aÞy
and that bð1þaÞ ¼ 2a, yields

Eðy9mi,mj4mcÞ ¼ miþk2hðxðmc ,miÞÞ: ð26Þ

Differentiating (26), and taking into account that ða=soÞk2 ¼
1
2b, one has

@Eðy9mi,mj4mcÞ

@mi

¼ 1�
1

2
bh0ðxðmc ,miÞÞ: ð27Þ

As is well known (see, e.g. Greene, 1993, Theorem 22.2), the slope of the hazard rate of a standard normal distribution,
h0ðzÞ 2 ð0;1Þ8z. This insight, combined with the fact that b 2 ½0;1�, allows us to conclude that @Eðy9mi,mj4mcÞ=@mi40.
Differentiating (26) with respect to mc and taking into account that k2=so ¼ b=2a, one has

@Eðy9mi,mj4mcÞ

@mc
¼

b
2ah0ðxðmc ,miÞÞ:

As h0ðzÞ 2 ð0;1Þ and as both a and b are positive, we conclude that @Eðy9mi,mj4mcÞ=@mc 40.
We now tackle the case in which mjomc. As above

Eðy9mi,mjomcÞ ¼
b
2

siþ
b
2

Eðsj9mi,mjomcÞþð1�bÞy: ð28Þ

From Johnson et al. (1995), we know that

Eðsj9mi,sjoscÞ ¼ mi�r
sc�mi

s2

� �
s2: ð29Þ

Inserting (29) into (28), replacing sc by ðmc�ð1�aÞyÞ=a, and taking into account that b=2a¼ 1=ð1þaÞ and that
1�b¼ ð1�aÞð1þaÞ, yields

Eðy9mi,mjomcÞ ¼ mi�k2rðxðmc ,miÞÞ: ð30Þ

Differentiating this last equation, and using the fact that a
so
k2 ¼

1
2b, one has

@Eðy9mi,mjomcÞ

@mi

¼ 1�
1

2
br0ðxðmc ,miÞÞ:

It is well known (see, e.g. Greene, 1993, Theorem 22.2) that r0ð�Þ 2 ð�1;0Þ. As b 2 ½0;1�, we conclude that @Eðy9mi,mjomcÞ=@mi

is positive. Differentiating (30) with respect to mc , one has @Eðy9mi,mjomcÞ=@mc ¼�ðk2=soÞr0ð�Þ, which is positive as r0ð�Þo0.
We now prove Point 3 of the lemma. From above, we know that Eðy9m,mj4mcÞ ¼ mþk2hðxðmc ,mÞÞ. At the second-period

cutoff m1, one has m1þk2hðxðmc ,m1ÞÞ ¼ 0. From what precedes, we also know that mþk2hðxðmc ,mÞÞ is increasing in m. Hence,
if there exists a solution, it is unique. We are left to establish that a solution exists. First, observe that limm-1
½mþk2hðxðmc ,mÞÞ� 40. Second, note that limm-�1½mþk2hðxðmc ,mÞÞ�o0, is equivalent to limm-�1 ðmþk2hðxðmc ,mÞÞÞ=m

	 

40,

which by l’Hôpital’s rule is equivalent to limm-�1 1�ðb=2Þh0ðxðmc ,mÞÞ
	 


40.Since h0 2 ð0;1Þ and bo1 this holds, which
establishes the existence of m1.
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Recall that Eðy9m,mjomcÞ ¼ m�k2rðxðmc ,mÞÞ. At the second-period cutoff m0, one has m0�k2rðxðmc ,m0ÞÞ ¼ 0. From above, we
know that m�k2rðxðmc ,mÞÞ is increasing in m. Hence, if a solution exists, it is unique. Note that limm-�1½m�k2rðxðmc ,mÞÞ�o0.
Using l’Hôpital’s rule, limm-1½m�k2rðxðmc ,mÞÞ�40, is equivalent to limm-1½1þ 1

2br0ðxðmc ,mÞÞ�40, which is satisfied as
r0ðzÞ 2 ð�1;0Þ. Hence, a solution exists.

We now prove point 4 of the lemma. Let ĉðmÞ � m�k2rðk1ðm�yÞÞ, and observe that m is implicitly defined as ĉðmÞ ¼ 0.
Using the fact that k1k2 ¼ ð1�aÞ=ð1þaÞ, yields

@ĉ
@m
¼ 1�

1�a
1þa

r0ð�Þ40

as r0ð�Þ 2 ð�1;0Þ. This insight, combined with the fact that limm-�1 ĉðmÞ ¼ �1 and that limm-1 ĉðmÞ ¼1 proves the
existence of a unique m. In the paper, we prove that 0om. Suppose momc rmi. Then 0� Eðy9m,mjomÞo Eðy9m, mjomcÞr
Eðy9mi,mjomcÞ, where all inequalities follow from Point 1 of this lemma. Hence, if momc , some active types will invest at
time two even ifno one invested at time one. Similarly, let f̂ðmÞ � mþk2hðk1ðm�yÞÞ, and observe that m is implicitly defined
as f̂ðmÞ ¼ 0. Using the fact that k1k2 ¼ ð1�aÞ=ð1þaÞ, yields

@f̂
@m ¼ 1þ

1�a
1þah0ð�Þ40:

This insight, combined with the fact that limm-�1 f̂ðmÞ ¼�1 and that limm-1 f̂ðmÞ ¼1 proves the existence of a unique
m. In the paper, we prove that mo0. Suppose mirmc om. Then Eðy9mi,mjomcÞoEðy9mi,mj4mcÞoEðy9m,mj4mÞ ¼ 0, where
the first inequality follows from the fact that observing mj4mc is good news and where the second inequality follows from
Point 1 of this lemma. Hence, if mc om,no active type invests at time two. Finally, suppose that mc 2 ðm,mÞ. As momc ,
0¼ Eðy9m,mj4mÞoEðy9mc ,mj4mcÞ, where the inequality follows from point 1 of this lemma. By continuity, there exist
values of mi close to (but less than) mc such that Player i wants to invest upon getting good news. As mc om, it follows from
point 1 of this lemma that Eðy9mc ,mjomcÞoEðy9m,mjomÞ ¼ 0. Hence, no active type invests at time two if no one did so at
time one. &

A.2. Proof of Lemma 1

Observe that for any finite m1 and mc
2, Eðy9m1,m2omc

2ÞoEðy9m1,m24mc
2Þ. There are thus three possibilities: (i) Eðy9m1,

m2omc
2ÞoEðy9m1,m24mc

2Þr0, (ii) Eðy9m1,m2omc
2Þr0oEðy9m1,m24mc

2Þ, and (iii) 0oEðy9m1,m2omc
2Þ oEðy9m1,m24mc

2Þ.
In case (i), Dð�Þ ¼ m1, which is increasing in m1.
In case (ii), Dð�Þ ¼ m1�dPrðm24mc

29m1ÞEðy9m1,m24mc
2Þ. Observe that

m1 ¼ Prðm24mc
29m1ÞEðy9m1,m24mc

2ÞþPrðm2omc
29m1ÞEðy9m1,m2omc

2Þ:

Inserting this last equality into Dð�Þ, yields

Dð�Þ ¼ ð1�dÞPrðm24mc
29m1ÞEðy9m1,m24mc

2ÞþPrðm2omc
29m1ÞEðy9m1,m2omc

2Þ:

Differentiating this last expression of Dð�Þ yields

@Dðm1,mc
2Þ

@m1

¼ ð1�dÞ
@Prðm24mc

29m1Þ

@m1

Eðy9m1,m24mc
2Þþð1�dÞ

@Eðy9m1,m24mc
2Þ

@m1

Prðm24mc
29m1Þ

þ
@Prðm2omc

29m1Þ

@m1

Eðy9m1,m2omc
2Þþ

@Eðy9m1,m2omc
2Þ

@m1

Prðm2omc
29m1Þ: ð31Þ

In case (ii), Eðy9m1,m24mc
2Þ40. As @Prðm24mc

29m1Þ=@m1 is also positive, the first term of the RHS of (31) is positive.
Moreover, from Lemma 2 we know that both @Eðy9m1,m24mc

2Þ=@m1 and @Eðy9m1,m2omc
2Þ=@m1 are positive. Hence, the

second and the fourth term of the RHS of (31) are also positive. In case (ii), Eðy9m1,m2omc
2Þr0. This assumption, combined

with the fact that @Prðm2omc
29m1Þ=@m1o0, proves that the third term of the RHS of (31) is also positive.

Finally, in case (iii) Dð�Þ ¼ ð1�dÞm1, which is also increasing in m1. &

A.3. Proof of Proposition 1

Recall that k1 ¼ ð1�aÞ=so, k2 ¼
1
2bs2, s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

pþs2
E

q
and that xðmc

2,m1Þ ¼ ðmc
2�am1�ð1�aÞyÞ=so. Recall also that

X ðZÞ ¼ df ðZÞ
1�dð1�FðZÞÞ

: ð32Þ

As f denotes the p.d.f. of a standard normal distribution, f ðZÞ � ð1=
ffiffiffiffiffiffi
2p
p
Þe�ð1=2ÞZ2

. Hence f 0ðZÞ ¼�f ðZÞZ.

Lemma 3. There exists a unique Ẑo0 such that X ðẐÞ ¼ �Ẑ. XðZÞ increases until Z¼ Ẑ, after which it decreases. One has

limZ-�1 XðZÞ ¼ limZ-þ1 XðZÞ ¼ 0; limZ-�1 X 0ðZÞ ¼ limZ-þ1 X 0ðZÞ ¼ 0; X 00ðZÞ40 if ZoZm (where Zmo Ẑ) and X 00ðZÞo0 if

Z 2 ðZm,ẐÞ; limd-1 Ẑ ¼�1; limd-0 X 0ðZmÞ ¼ 0; and limd-1 X 0ðZmÞ ¼1.
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Proof. Observe that XðZÞ40 for d40. Hence, X ðZÞ4�Z, 8Z40. Mere introspection of (32) reveals that for sufficiently
low values of Z, X ðZÞo�Z. By continuity, there exists at least one Ẑo0 such that X ðẐÞ ¼�Ẑ. Observe that the right hand
side of the equality XðẐÞ ¼�Ẑ decreases in Z. Using the fact that f 0ðZÞ ¼�f ðZÞZ, one has

@X ðZÞ
@Z ¼X 0ðZÞ ¼�X ðZÞ½ZþX ðZÞ�: ð33Þ

This slope is equal to zero if and only if XðZÞ ¼�Z. Hence, whenever X ðZÞ ¼ �Z, the right hand side of the equality strictly
decreases in Z, while its left hand side remains constant. As the slope of X ðZÞ varies smoothly with changes in Z, this
implies that there is exactly one Ẑo0 such that X ðẐÞ ¼�Ẑ.

Note that if Zo Ẑ, XðZÞo�Z, and X 0ðZÞ40. Similarly, if Z4 Ẑ, X 0ðZÞo0. As the denominator of (32) is greater than 1�d
and as limZ-þ1 f ðZÞ ¼ limZ-�1 f ðZÞ ¼ 0, one has limZ-�1 X ðZÞ ¼ limZ-þ1 X ðZÞ ¼ 0.

On the basis of (33), one has

lim
Z-1
X 0ðZÞ ¼ lim

Z-1
XðZÞð�ZÞ� lim

Z-1
½XðZÞ�2:

Since limZ-1 X ðZÞ ¼ 0, limZ-1 ½XðZÞ�2 ¼ 0. Observe also that

XðZÞð�ZÞ ¼ df ðZÞð�ZÞ
1�dð1�FðZÞÞ ¼

df 0ðZÞ
1�dð1�FðZÞÞ :

Using the well-known fact that limZ-1 f 0ðZÞ ¼ 0, limZ-1 X ðZÞð�ZÞ ¼ 0. Hence, limZ-1 X 0ðZÞ ¼ 0. By the same reasoning—

and as do1FlimZ-�1 X 0ðZÞ is zero.
Differentiating Eq. (33) gives

X 00ðZÞ ¼�ZX 0ðZÞ�2X 0ðZÞXðZÞ�X ðZÞ: ð34Þ

Using Eq. (33), to rewrite the above yields

X 00ðZÞ ¼X ðZÞ½ðZþX ðZÞÞðZþ2X ðZÞÞ�1�: ð35Þ

Using our earlier finding that limZ-�1 X ðZÞ ¼ 0, the term between square brackets goes to infinity as Z goes to minus
infinity. Recall that for any finite Z, X ðZÞ40. It thus follows from (35) that for any finite and sufficiently low value of Z,
X 00ðZÞ40. For X 0ðẐÞ ¼ 0, it follows from (34) that X 00ðẐÞo0. By continuity, there exists at least one Zm 2 ð�1,ẐÞ such that
X 00ðZmÞ ¼ 0. Differentiating (34), and evaluating at the point Z¼ Zm, one has

X 000ðZÞ9Z ¼ Zm ¼�X 0ðZmÞ�2ðX 0ðZmÞÞ
2o0,

where the inequality follows from the fact that X 0ðZmÞ40, because Zmo Ẑ. We conclude that Zm is unique.
Recall that Ẑo0. Suppose limd-1 X 0ðẐÞ ¼ 0 for some Ẑ 2 ð�1,0Þ. It follows from (33) that

lim
d-1
X 0ðẐÞ ¼ 03�Ẑ ¼ lim

d-1
XðẐÞ ¼ f ðẐÞ

FðẐÞ ¼ rðẐÞ:

It is easy to check that @rðZÞ=@Z¼�rðZÞðrðZÞþZÞ. Hence, r0ðẐÞ ¼ 0. This, however, contradicts the fact that r0ðZÞo08Z 2
ð�1,1Þ (see Greene, 1993, Theorem 22.2). Thus, limd-1 Ẑ ¼�1.

Observe that limd-0 X ðZÞ ¼ 0 8Z. Hence, limd-0 X 0ðZmÞ ¼ 0.
As Zmo Ẑ and limd-1 Ẑ ¼�1, limd-1 Zm ¼�1. Therefore

lim
d-1
XðZmÞ ¼

lim
Zm-�1

f ðZmÞ

lim
Zm-�1

FðZmÞ
¼1,

where the last equality follows from l’Hôpital’s rule and the fact that f 0ðZÞ ¼�Zf ðZÞ. It follows from (34) that

X 00ðZmÞ ¼ 03Zm ¼�XðZmÞ
1

X 0ðZmÞ
þ2

� �
: ð36Þ

Recall that X 0ðZmÞ ¼ �XðZmÞ½ZmþX ðZmÞ�. Replacing Zm on the right-hand side of this equality by the right-hand side of the
last equality in (36), and rearranging, one has

½X 0ðZmÞ�2

1þX 0ðZmÞ
¼ ½X ðZmÞ�2:

As limd-1 XðZmÞ ¼1, limd-1½X ðZmÞ�2 ¼1. Thus limd-1½X 0ðZmÞ�2=ð1þX 0ðZmÞÞ ¼1, which implies that limd-1X 0ðZmÞ ¼1. &

Call LHS (RHS) the left-hand side (respectively right-hand side) of Eq. (5) after replacing mLF by m, and observe that

@LHS

@m ¼ 1
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and that

@RHS

@m ¼ k1k2X 0ðk1ðm�yÞÞ ¼
1�a
1þaX

0ðk1ðm�yÞÞ,

where the last equality follows from the fact that b=2a¼ 1=ð1þaÞ. From Lemma 3, we know that X 0ðk1ðmLF�yÞÞ is maximal
when k1ðmLF�yÞ ¼ Zm.31 As X 00ð�Þ40 when k1ðmLF�yÞoZm, as X 00ð�Þo0 when k1ðmLF�yÞ 2 ðZm,ẐÞ and as X 0ð�Þo0 when
k1ðmLF�yÞ4 Ẑ, it follows that 8y, there exists a unique switching equilibrium if and only if

@RHS

@m

����
m ¼ mLF ¼ Zm=k1þy

r13X 0ðZmÞr
1þa
1�a3

s2
y

s2
E
Z

1

2
½X 0ðZmÞ�1�,

where the last equivalence follows from the fact that a¼ s2
y=ðs

2
yþs

2
E Þ.

Recall that

gðmÞ ¼ m�k2X ðk1ðm�yÞÞ ð37Þ

and observe that Eq. (5) is equivalent to gðmLF Þ ¼ 0. If mo0, gðmÞo0: Thus, mLF 40. Hence, if yr0, k1ðmLF�yÞ40. It then
follows from Lemma 3 that X 0ðk1ðmLF�yÞÞo0. Hence, if yr0, there exists a unique switching equilibrium.

Suppose that if Player i waits, she perfectly learns the state of the world, which gives an upper bound on the value of
learning. Player i’s gain of waiting then equals dPrðy409miÞEðy9mi,y40Þ. Observe that for high enough a mi,
Eðy9mi,y40Þ � Eðy9miÞ ¼ mi: As do1, there exists a mo1 such that m ¼ dPrðy409mÞEðy9m,y40Þ. If m4m Player i strictly
prefers to invest at time one. Hence, mLF omo1. As mLF 2 ð0,mÞ, k1ðmLF�yÞ-�1, as y-1. It then follows from Lemma 3
that limy-1ðð1�aÞ=ð1þaÞÞX

0ðk1ðmLF�yÞÞ ¼ 0. By continuity, there exists a yu such that if yZyu, ðð1�aÞ=ð1þaÞÞX 0
ðk1ðmLF�yÞÞr1. Thus if y4yu there exists a unique switching equilibrium.

Recall from Lemma 3 that limd-1 Ẑ ¼�1 and that X 0ðZÞo0 when Z4 Ẑ. Thus, if d is close to one, m cuts k2X ðk1ðm�yÞÞ
when X 0ð�Þo0, in which case equilibrium is unique. By continuity, there exists a do1 such that X 0ðk1ðmLF�yÞÞr0 for
all dZd. &

A.4. Proof of the equivalence between Eqs. (7) and (8)

In this proof, k denotes the p.d.f. of some random variable. For example, kðyÞ ¼ f ððy�yÞ=syÞ. k obviously depends on the
studied random variable. For example, it follows from our section ‘‘Definitions and Preliminaries’’ that y�Nðy,s2

yÞ and that
mi9y�Nðayþð1�aÞy,s2

mÞ. Hence, kðyÞakðmi9yÞ. In that sense, it would be more precise to use the notation ky and kmi9y to
respectively denote the p.d.f.’s of y and mi9y. In this proof, however, we avoid this cumbersome notation. This should not
cause confusion. Observe that Eq. (7) can be rewritten as

1

2
W ¼

Z
Prðmi4mc9yÞykðyÞ dyþd

Z
Prðmj4mc ,mi 2 ½minfm,mcg,mc�9yÞykðyÞ dy

þd
Z

Prðmjomc ,mi 2 ½minfm0,mcg,mc�9yÞykðyÞ dy: ð38Þ

Observe also thatZ
Prðmi4mc9yÞykðyÞ dy¼

Z Z 1
mc

kðmi,yÞ
kðyÞ

dmi ykðyÞ dy¼
Z 1
mc

Z
ykðy9miÞ dy kðmiÞ dmi:

Trivially, mi ¼
R
ykðy9miÞdy. Hence, the first integral of (38) is equal to

R1
mc mikðmiÞ dmi.

The second integral of (38) can be rewritten asZZ 1
mc

Z mc

minfm ,mcg

kðmj,mi,yÞ
kðyÞ

dmi dmj ykðyÞ dy:

Changing the order of integration, the above integral can be rewritten asZ mc

minfm ,mcg

Z 1
mc

Z
ykðy9mi,mjÞ dy|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Eðy9mi ,mjÞ

kðmj9miÞ dmj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Prðmj 4mc9miÞEðy9mi ,mj 4mc Þ

kðmiÞ dmi:

Hence, the second integral of (38) is equal to
R mc

minfm ,mcg
Prðmj4mc9miÞEðy9mi,mj4mcÞkðmiÞdmi.

Using an identical procedure, the third integral of (38) can be rewritten as
R mc

minfm0 ,mcg
Prðmjomc9miÞEðy9mi,mjomcÞkðmiÞdmi. &

31 As a unit increase in y leads to a translation of X ð�Þ to the right by one unit (as shown in Fig. 1), it follows that there exists a unique y such that

k1ðmLF�yÞ ¼ Zm.
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A.5. Proof of Proposition 2

The proof of this proposition is almost entirely explained in the body of the text. We are left to prove Inequality (12). It
follows from (22) and from Lemma 2 that

Prðmj4mc9miÞEðy9mi,mj4mcÞ ¼ ½1�Fðxðmc ,miÞÞ�½miþk2hðxðmc ,miÞÞ�:

Recall that ð1�FðzÞÞhðzÞ ¼ f ðzÞ, that f 0ðzÞ ¼�f ðzÞz and that xðmc ,miÞ ¼ ðmc�ami�ð1�aÞyÞ=so. Hence, the derivative of the right-
hand side with respect to mc equals

1

so
f ðxðmc ,miÞÞ �miþk2

ð1�aÞyþami�mc

so

" #
,

which is positive if and only if the term between square brackets is. It is straightforward to show that k2=so ¼ 1=ð1þaÞ.
This insight permits us to conclude that the term between square brackets is positive if and only if ð1�aÞy�mi4mc.

A.6. Proof of Proposition 3

Let ~m � ð1�aÞy�mLF and recall that xðmLF ,miÞ ¼ ðmLF�ami�ð1�aÞyÞ=so.

Lemma 4. Suppose yr0. If, additionally, mi 2 ½m1, ~m�, Player i wants the social planner to implement a higher cutoff. If

mi 2 ½ ~m,mLF �, Player i wants the social planner to implement a lower cutoff.

Proof. Suppose mi ¼ ~m. As yr0 and as mLF 40, Player i waits at time one. Furthermore, it follows from Inequality (13) that
her gain of waiting is maximal under a laissez-faire policy. One has

Eðy9mi ¼ ~m,mj ¼ mLF Þ ¼ E y si ¼�
mLF

a ,sj ¼
mLF�ð1�aÞy

a

�����
 !

¼ 0

oEðy9mi ¼ ~m,mj4mLF Þ,

where the second equality follows from Eq. (23), from the fact that b
2a ¼ 1=ð1þaÞ and that 1�b¼ ð1�aÞ=ð1þaÞ. It then

follows from Point 1 of Lemma 2 that m1o ~m. The lemma then follows from Inequality (12). &

Lemma 5. One has limy-�1 mLF ¼ limy-�1ð1�aÞy�m
1.

Proof. Rewriting xðmLF , ~mÞ using k2 ¼
1
2bs2 and b

2a ¼ 1=ð1þaÞ verifies that ~m ¼�k2xðmLF , ~mÞ. Furthermore, using the
definition of f, and that m1 is implicitly defined through fðm1Þ ¼ 0, one has m1 ¼�k2hðxðmLF ,m1ÞÞ. Therefore

ð1�aÞy�mLF�m1 ¼ ~m�m1 ¼ k2ðhðxðmLF ,m1ÞÞ�xðmLF , ~mÞÞ: ð39Þ

Furthermore

xðmLF , ~mÞ ¼ xðmLF ,m1Þþ
m1� ~m
s2

: ð40Þ

Inserting (40) into (39), and rearranging, yields

ð ~m�m1Þð1þ1
2bÞ ¼ k2ðhðxðmLF ,m1ÞÞ�xðmLF ,m1ÞÞ:

Recall that h0ðZÞ ¼ hðZÞ½hðZÞ�Z�, that h0ðZÞ 2 ð0;1Þ, and that limZ-1 hðZÞ ¼1. Hence, hðZÞ4Z and limZ-1ðhðZÞ�ZÞ ¼ 0. Since
m1o0, limy-�1 xðmLF ,m1Þ ¼1, which implies that

lim
y-�1

k2ðhðxðmLF ,m1ÞÞ�xðmLF ,m1ÞÞ ¼ 0:

As 1þ 1
2b40, this implies that limy-�1ð

~m�m1Þ ¼ 0. Rewriting this last equality yields the lemma. &

In the body of the text, we argued that Dðm,mÞo0 and that DðmLF ,mLF Þ ¼ 0. Suppose that mi ¼ m40. By definition, this
means that if Player i gets bad news, she is indifferent between investing and not investing. Hence, one can think of her
as someone who will always invest at time two—even if the other player did not do so at time one. Hence,
Dðm,mÞ ¼ ð1�dÞm40. If equilibrium is unique, those results imply that Dðmc ,mcÞ40 whenever mc 4mLF . In turn, this
implies that the first term of Eq. (10) is negative if equilibrium is unique and if mc 4ðmLF ,m�. Recall from Proposition 1 that
equilibrium is unique whenever yo0. It follows from Lemma 5 that if y-�1 the third term of (10) is non-positive.
Hence, dU=dmc o0 if mc 2 ðmLF ,m� and if y is sufficiently negative.

We are left to show that the social planner does not want to implement a mc 4m when the prior mean is sufficiently
negative. From the explanations provided in the body of this paper, we know that if mc 4m all types between mc and m0
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always invest at time two and that all types between m1 and m0 invest at time two only if they received good news. Hence

U ¼

Z 1
mc

mif
mi�y
sm

 !
dmiþd

Z mc

m0

mif
mi�y
sm

 !
dmiþd

Z m0

m1

Prðmj4mc9miÞEðy9mi,mj4mcÞf
mi�y
sm

 !
dmi:

o
Z 1
m0

mif
mi�y
sm

 !
dmiþd

Z m0

m1

Prðmj4mc9miÞEðy9mi,mj4mcÞf
mi�y
sm

 !
dmi �U :

Observe that U ¼U when mc ¼ m. Hence, it suffices to show that dU=dmc o0 when mc 4m and when y is sufficiently
negative. Taking into account the fact that Eðy9m0,mjomcÞ ¼ Eðy9m1,mj4mcÞ ¼ 0, it follows that 8mc 4m

dU

dmc
¼

dm0

dmc
ð1�dÞPrðmj4mc9m0ÞEðy9m0,mj4mcÞf

m0�y
sm

 !
þd

Z m0

m1

@

@mc
ðPrðmj4mc9miÞEðy9mi,mj4mcÞÞf

mi�y
sm

 !
dmi: ð41Þ

It follows from Lemma 2 that m0 is implicitly defined by

m0�k2r
mc�am0�ð1�aÞy

so

 !
¼ 0:

It then follows from the implicit function theorem that

dm0

dmc
¼�

�
k2
so

r0ð�Þ

1þak2
so

r0ð�Þ
¼

1
1þar

0ð�Þ

1þ1
2br0ð�Þ

o0,

where the inequality follows from the fact that r0ð�Þ 2 ð�1;0Þ and that b 2 ½0;1�. Hence, the first term of Eq. (41) is negative.
It follows from Lemma 5 that the gain of waiting of the inframarginal types (with the exception of m1) is decreasing in mc

when y-�1. Hence, The second term of (41) is non-positive. Hence, dU=dmc o0 when mc 4m and when y is sufficiently
negative. &
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