
Attack simulation for a realistic evaluation and
comparison of network security techniques

Alexander Bajic and Georg T. Becker

Digital Society Institute, ESMT Berlin, Germany ?

firstname.lastname@esmt.org

Abstract. New network security techniques and strategies, such as Mov-
ing Target Defense (MTD), with promising narratives and concepts emerge
on a regular basis. From a practical point of view, some of the most es-
sential questions in judging a new defense technique are: What kind of
attacks — and under which conditions — can be prevented? How does it
compare to the state-of-the-art? Are there scenarios in which this tech-
nique poses a risk? Answering these questions is often difficult and no
common framework for evaluating new techniques exists today.
In this paper we present an early operational version of such a practi-
cal evaluation framework that is able to incorporate static and dynamic
defenses alike. The main idea is to model realistic networks and attacks
with a high level of detail, integrate different defenses into this model,
and measure their contribution to security in a given scenario with the
help of simulation. To show the validity of our approach we use a small
but realistic enterprise network as a case study in which we incorporate
different realizations of the MTD technique VM migration. The quan-
titative results of the simulation based on attacker revenue reveal that
VM migration actually has a negative impact on security. Using the log
files containing the individual attack steps of the simulation, a qualita-
tive analysis is performed to understand the reason. This combination of
quantitative and qualitative analysis options is one of the main benefits
of using attack simulation as an evaluation tool.

Keywords: Moving target defense, attack simulation, attack graphs, network
modeling

1 Introduction

How to secure networks and systems against malicious actors is an extremely
important question in today’s digitized world. It is not surprising that new ap-
proaches and techniques are being proposed on a regular basis. One of the current
trends in network security is Moving Target Defense (MTD). The idea of MTD is

? This research is supported by Rheinmetall. To be published in the proceedings of the
“Nordic Conference on Secure IT Systems” (NordSec 2018), Springer LNCS, Oslo,
Norway, November 2018.

to not treat systems as static but dynamically change their appearance in ways
that make reconnaissance and attacks considerably harder in practice. Several
approaches for the network layer have been proposed. Maybe the most popular
being network address space randomization both at the IP as well as at the
MAC layer [1, 6, 15–17]. The increasing use of software defined networks (SDN)
gives further rise to this development [17, 14]. Other examples of network-based
MTD techniques are dynamic resource mapping [10] or the dynamic movement
of anomaly detectors across a network [25].

However, measuring the effectiveness of these techniques is very difficult. A
considerable amount of published work looks at individual techniques, mainly in
a theoretical fashion. Still, the practical benefits of each technique are not always
apparent and general evaluation techniques applicable to a broader range of de-
fenses are yet to arrive. Furthermore, how the theoretical results map to specific
use cases and scenarios is often not obvious, making it difficult for practition-
ers to evaluate a new security technique. Evaluation techniques that allow for
an easy application on real-world scenarios while preserving a solid theoretical
foundation could fill this gap.

In this paper we propose the utilization of attack simulation as an evaluation
technique to approach this topic. The simulation is based on a detailed model of
a realistic network as well as attack and defense actions. In contrast to previous
modeling approaches, attack actions do not only comprise vulnerability exploits
but also legitimate actions that have been observed in the real world and affect
the attackers progress during the phases of an attack. The results of such simu-
lation allow for the detailed inspection of interaction to unveil how attacks and
defenses counteract each other in practice. Additionally, they show the extent to
which a specific defense and its timing impact an attacker’s success with regard
to achieved goals and costs.

1.1 Main contribution

The main contribution can be summarized as follows:

– We propose attack simulation based on realistic vulnerabilities and attack
steps as a method to evaluate dynamic defense techniques as advocated by
MTD, as well as static countermeasures against network-based attacks. The
level of detail exceeds that of previous work.

– We demonstrate the general applicability and usefulness of this approach us-
ing a case study consisting of a small enterprise network and different defense
techniques (VM migration, VM resetting and IP shuffling). By providing re-
sults on measures such as attacker revenue and time spent, as well as detailed
information of started and performed actions, our approach allows for both
qualitative and quantitative analysis.

– Our evaluation of VM migration raises strong doubts if VM migration is
a useful defense technique for corporate networks. Depending on the sce-
nario, it can have a negative as well as positive impact on security. However,
the positive impact was only an increase in attack time or decrease in the

attacker’s success probability. In comparison, the negative impact was that
new attack paths became available, resulting in the attacker achieving attack
goals that were otherwise impossible to achieve in the given scenario.

2 Related work

In the MTD community various analysis techniques have been proposed specifi-
cally designed to analyze and/or compare dynamic network security techniques.
Anderson et al. [3] present two mathematical models, one based on closed forms
and another one based on Stochastic Petri Nets, to evaluate the effect of dynamic
platforms as a defense on the success of attacks. Maleki et al. [18] utilize Markov
models to investigate the effect of IP address randomization on attacker success.
Connell et al. [5] focus on the trade-off between costs and gain by modeling
both the costs of a defense as well as the security gain of the defense to find an
optimum. As a case study they use VM migration with VM resetting, the same
defense we employ in our case study.

These approaches are mathematically sound, but assume a very simplified
attacker and defender model by reducing the investigated technique to the prob-
abilistic effect of changing a single parameter. In how far these results are ap-
plicable to real world attacks remains unclear. Besides probabilistic models, also
game-theoretic approaches have been suggested to analyze MTD techniques. Ex-
amples are the works of Prakash and Wellman [21], and Vadlamudi et al. [24].
Zhuang et al. [29] presented an approach to analyze the effectiveness of MTD
techniques based on network graphs in which edges represent the compromisation
of adjacent nodes. The model they suggest evaluates the likelihood of successful
attacks with and without MTD techniques. Zaffarano et al. [28] present a frame-
work to develop metrics for potentially relevant measures. These metrics are de-
rived from raw data that have been gathered in different virtual environments
with different attacker and defender objectives. Though neither reproducible nor
extensible, users of this framework can investigate the effect of changes to a sys-
tem through the sheer amount of data. A refined and more specific version of
this framework is presented by Taylor et al. [23]. The framework proposed by
Connell et al. [4] puts strong emphasis on the formal description of the mathe-
matical model that allows for quantitative comparability. Yet, their approach is
static so that not all MTD techniques can be described.

Zhuang et al. [30] suggest to utilize simulation on the basis of conservative
attack graphs. They analyzed both VM-Shuffling and IP-Shuffling with help of
the by now discontinued Nessi2 platform [22]. Though Zhuang et al. do not
elaborate on the possibility to incorporate different defenses for the sake of com-
parative evaluation, they show that simulation on the basis of state descriptions
is viable. Hong and Kim [10] proposed to analyze MTD techniques with help of
their hierarchical attack representation model (HARM) that is based on attack
trees and graphs that are arranged on different layers. They do so for VM mi-
gration, OS diversification, and VM resetting to demonstrate their effectiveness.
However, their assessment does not consider continuous movement. They only

investigate whether or not a threat level can be reduced with the help of a con-
figuration change that is induced by one of the aforementioned techniques. This
way they turn the general question on when and how to move into an optimiza-
tion problem for a known threat, thus movement will ultimately stop as soon as
no further optimization is possible.

There exists a considerable amount of work on how to model attack steps to
create attack trees and graphs as well as their subsequent analysis, be it static or
based on simulation. Traditionally, attack graphs and trees are used to evaluate
the security of networks or systems with regard to a specific goal and not to
compare different defense techniques. Yet, by comparing an attack tree with
variations of itself that consider the presence of different defensive techniques,
one might derive a technique’s impact on reaching the defined goal. Our solution
is heavily influenced by these works.

Complete frameworks that describe networks with the help of modeling lan-
guages, automate tree/graph generation, and also perform quantitative evalu-
ation are, for example, the TVA tool [12], MulVal [20], CAULDRON [11], Cy-
SeMoL [9], and P2CySeMoL [8]. However, many approaches (e.g. MulVal and
Cauldron) aim for automated modeling with help of network scanners and au-
tomatically generated exploit rules based on data from CVSS databases. While
this is suitable to automatically analyze large networks, it does not offer the re-
quired level of detail for simulating complex interaction or attacker knowledge.
Additionally, most frameworks do not consider the possibility of intermediate
state changes caused by dynamic defense techniques and the effect this has on
the corresponding attack graph. In the presence of an active defender, such at-
tack graphs require repeated renewal. Therefore, frameworks that rely on only
one intially generated attack graph are not well suited to analyze the effects of
dynamic defenses. A modeling approach which focuses on processes rather than
states is used in pwnPr3d [13, 26]. These processes are directly translated into
attack steps. While it is capable of modeling dependencies of exploits and legiti-
mate actions in high detail, it appeared not to be trivial to do so for interaction
of attacker and defender.

3 Attack Simulation as an MTD evaluation tool

The primary goal is to get a realistic assessment of how various defenses perform
in different scenarios. As Evans et al. [7] have pointed out, utility of a specific de-
fensive technique is not universal but highly dependent on the context it is used
in. Additionally, such an investigation on performance should not be limited to
static defenses but incorporate a dynamic defender as is advocated by Moving
Target Defense. Simulation appears to be a suitable approach as it is capable
of incorporating numerous actors and can be applied to arbitrarily detailed sce-
narios. This allows for measuring the attacker’s success rate and revenue in the
presence of different defense techniques and, in turn, helps to determine which
of these techniques is most useful in which network scenario.

3.1 Modeling networks, exploits and defenses

In the presence of the various approaches to modeling and evaluation, part of
which have been shortly introduced in Section 2, we ultimately decided to employ
deductive reasoning on the basis of coherent state descriptions with the help of
Prolog, similar to MulVal. But unlike MulVal, we employ a more elaborate model
of attack steps and state descriptions. Since detailed models require considerable
effort when describing systems and actions, we first defined a high-level language.
This language is human-readable and can automatically be translated to Prolog
facts and rules. This has proven to be much more efficient than defining the
system directly in Prolog.

A crucial aspect of realistic modeling is the handling of attacker knowledge,
especially with regard to multi-stage attacks such as APTs (Advanced Persistent
Threats), where lateral movement through a network plays an important role.
Such movement is not only dependent on successful attacks but might equally
be enabled by previously gained information and the use of legitimate functions.
In realistic attacks, this is as important as exploits.

Key features of our modeling approach that achieve a higher level of detail
compared to HARM [10] or attack graph tools such MulVal [20] are:

– Modeling of attacker knowledge, i.e. IP-addresses, DNS names, usernames,
passwords, and other useful data (e.g. files representing attack goals).

– Modeling of legitimate functions such as database queries, remote shell, DNS
lookups and ARP cache queries.

– Each exploit is modeled manually according to CVSS or metasploit descrip-
tions and not simply based on the CVSS score and binary patch statuses.

– The results of exploits and attacker actions are freely programmable. This
way exploits are not restricted to grant remote code execution (RCE) privi-
leges or reveal credentials but more complex functionality such as return all
data in RAM (e.g. for Meltdown) is feasible as well.

3.2 Attack simulation

The attack simulation itself is performed in a round-based fashion. Each attacker
and defender action takes a certain amount of rounds to execute and has a success
probability. In each round the defender acts first, followed by the attacker. To
be more precise, the simulation algorithm is as follows:

For n rounds repeat:

1. Defender Actions

(a) For each defender action that is due in the current round do the
following: If it is a probabilistic action, use a dice roll to determine if
the action is successful or not. If so, perform the action and modify
the state of the system accordingly. Finally, remove the action, no
matter if successful or not, from the list of ongoing actions.

(b) Check if new defense actions are available (by checking if an action is
feasible to execute as well as if it is in-line with the defense strategy).
For each new defense action determine the finishing time and check
if it has probabilistic parameters such as the direction of the shuffle.
If so, use a dice roll to determine the parameters. Then add them to
the list of ongoing defense actions.

2. Attacker action

(a) For each action in the list of ongoing attack actions, check if it is
still feasible in the current state. If not, because of a previous de-
fense action, for example, remove the action from the list of ongoing
attacker actions.

(b) For each attacker action that is due in the current round do the
following: If it is a probabilistic action, use a dice roll to determine if
it is successful or not. If so, perform the action and modify the state
of the system accordingly. Finally, remove the action, no matter if
successful or not, from the list of ongoing actions.

(c) Check if new attacker actions have become available that are not
already in the list of ongoing actions. If so, calculate their finishing
time and add them to the list of ongoing attack actions.

In our simulation approach we assume that the attacker can perform all available
actions in parallel. However, once an action has been started, the same action
cannot be initiated with the same parameters again as long as it is in the list
of ongoing attacker actions. To illustrate this, an attacker can start a phishing
attack against five different targets in a single round. However, once he has
started a phishing attack against a target, the attacker has to wait until this
phishing attack was either successful, failed or was defended before launching
another phishing attack against the same target. But if the attacker learns of a
new target, he is free to start a phishing attack against this new target any time.

For each round the simulation engine stores the generated revenue and relates
the accumulated amount to the number of rounds that it took the attacker to
reach it. Hence, the simulation engine does not report costs on a per action
basis but counts the overall time till compromise, similar to the method used
by P2CySeMoL [8] and pwnPr3d [13]. The alternative would be to limit the
number of actions an attacker can execute in parallel and assign costs to each
action. However, this would require an intelligent attacker with a strategy, as
it would be crucial for the attacker to choose the correct action at the correct
time. Furthermore, many attacks can be automated so that — after the initial
development — actually executing them might be a matter of starting a script
and waiting. We, therefore, opted for a simulation in which each attack option is
initiated whenever it becomes available. This leads to a fairer comparison since
the results do not depend on how well the attacker AI has been tuned to a
defense technique. Note, however, that analyzing some countermeasures such as
honeypots requires the modeling of a smart attack. Modeling smart attackers
for such cases is interesting future research.

4 Case Study

As a case study for our simulation-based evaluation approach we use VM shuf-
fling, VM resetting, IP shuffling, and combinations thereof as defenses. In the ab-
sence of established benchmark networks we modeled our own reference network,
which is based on a typical layout for small enterprises and employs commonly
used applications and services.

4.1 Defense techniques

One of the MTD techniques we employ is frequently refered to as VM migration
or shuffling that is basically the (random) relocation of VMs across various phys-
ical hosts. The idea has been addressed in several articles dealing with MTD and
network defense in general [19, 2, 27]. It has also been used by Hong and Kim [10]
as well as Connell et al. [5] in their MTD assessment methodologies. Hong and
Kim assume the entire virtual node to be moved from one physical host to an-
other using live migration. That means, the VM is moved without loosing its
current state. We denote this defense technique as live migration in our exper-
iments. In their case study, consisting of three hosts and seven VMs, this live
migration changes the connectivity of the VMs which impacts the exploits that
can be carried out by the attacker.

Table 1. The list of defenses used in our case study. In addition to these defenses, the
scenario is also tested without any defenses.

Name Description Impact

Live migration The VM is migrated from one
physical host to another with-
out loosing its state.

Moving a VM changes the physical
connectivity and hence the routing.

VM resetting The VM is restarted from read-
only memory, loosing all state
information.

Any remote code execution privi-
leges on the VM previously gained
by the attacker are removed.

IP shuffling A new IP address is assigned to
the VM.

Knowledge of the IP address previ-
ously gained by the attacker is re-
moved.

Cold migration The VM is migrated to a dif-
ferent physical host, restarted
there from read-only memory,
and assigned a new IP.

This is the combination of live mi-
gration, VM resetting, and IP shuf-
fling.

Connell et al. [5] assume a different form of VM shuffling which we denote
as cold migration. In their scenario, several VMs for the same applications can
exist in parallel and the shuffle operation starts a new VM “from scratch” on a
different host. New requests are then directed to this new VM and the old VM
is shut down as soon as all old request are finished. The fact that VMs are shut

Fig. 1. The network used in our case study, representing a fairly typical small enterprise
setup.

down and restarted from read-only memory ensures that attackers do not gain
persistence on these servers. Furthermore, they assume some form of IP shuffling
since each new VM gets a new IP via DHCP.

Note that this form of VM shuffling is much more difficult to realize in prac-
tice. It is only suitable for applications that do not need to persist data locally.
In our analysis we ignore this aspect and will assume that each VM that can be
shuffled using live migration can also be shuffled using cold migration to be able
to compare the security of both approaches.

4.2 Network layout and software landscape

Figure 1 shows the network setup for the envisioned small enterprise network.
The network is separated into a DMZ with servers accessible to the Internet, an
intranet with clients, and a server subnet. The communication between zones as
well as between machines in the server subnet is subject to firewalling. Further-
more, no machine beyond the DMZ is directly reachable from the Internet.

In the DMZ we assume two Xen servers that form a pool of hypervisors for
three VMs. These comprise a Microsoft Exchange server running on Windows
Server, and two VMs running on Ubuntu Server. One for the company’s Drupal-
based website, and one for a Tomcat server that hosts applications such as time
tracking that are accessible to employees from the intranet as well as from the
Internet after log-in.

In the server subnet we assume four hosts, three of which form another pool
of Xen servers to host VMs, and one Ubuntu Server machine serving as a storage
system for backups. The VMs in this second pool comprise:

– A Windows-based Active Directory Server acting as the domain controller,
providing authentication services and network file sharing.

– A server running Base CRM, a proprietary customer relationship manage-
ment system, based on Ubuntu Server.

– A server for accounting applications such as Datev, based on Windows
Server.

– Another Tomcat server that exclusively runs applications for the HR depart-
ment, based on Ubuntu Server.

– A Veritas Netbackup server to centrally command and control the backup
agents on the various backup clients, based on CentOS server.

– Two Ubuntu-based servers for DevOps purposes (e.g. Jenkins and Jira).
– Four SQL servers, two of which are based on Ubuntu Server (for the Tomcat

HR and Base CRM) and the other two being based on Windows Server (for
Active Directory and Exchange).

Finally, we assume the client computers to be located in the intranet, which
is connected to the server subnet and the DMZ through the second firewall. All
clients are based on Windows 10 and differ in the user groups that operate them.
They are equipped with the MS Office suite and backup agents.

In our example network, we modeled eight different attack goals that can be
achieved by an attacker. All these goals are based on the retrieval of information,
yielding different amounts of revenue which add up to 100 points in total. Four of
these information elements are classified as “customer data”, two of which yield
15 points each, the other two 10 points each. Additionally, there are two “finan-
cial data” elements, yielding 15 points each, as well as credit card information
and HR data for 10 points, each. All of this data can be accessed in different
ways. One way to access customer data is through the Base CRM frontend, if
respective credentials have been obtained from the various back-office clients.
Another option is to directly query the SQL server where data is stored, given
the fact that the attacker was able to obtain username and password. Yet another
possibility is to compromise the operating system that the SQL server is running
on and exfiltrate the database. The financial data can be accessed through the
CEO’s computer or through his/her e-mail account, again opening up different
ways to acquire this information. HR data can be obtained through compromis-
ing either the Tomcat server in the server subnet or the respective SQL server
where data is stored. Finally, credit card information can be retrieved through
access to the assistant’s computer or its backup.

The fact that our sample network utilizes Xen hypervisors to host VMs for
different purposes allows us to incorporate VM migration in our scenarios. From
a practical point of view it does not make sense to shuffle VMs from the DMZ
with those from the server subnet. Hence, we assume that VM shuffling is only
used to move VMs across hosts that belong to the same pool. To simulate the

changed physical connectivity mentioned by Hong and Kim we chose to directly
attach the hosts from the server subnet to the free ports of the routing firewall
FW2. By default, most hypervisors use a virtual switch that the hosted VMs
are attached to. We, therefore, assume that VMs located on the same host are
connected by the virtual switch of the hypervisor and can communicate with
each other regardless of the firewall setting in FW2. To summarize, the firewall
FW2 limits the communication between VMs located on different hosts but the
communication between VMs on the same host is not restricted.

It should be noted that the four VMs that serve as SQL servers for the differ-
ent applications are never migrated but strictly allocated to host 6. This is due
to the fact that the migration of VMs that contain large databases poses addi-
tional challenges in order to maintain availability and consistency. Additionally,
VM resetting conflicts with the database’s primary purpose to persist data.

4.3 Vulnerabilities and attack steps

Choosing realistic vulnerabilities and exploits, as well as legitimate actions that
contribute to the attacker’s progress is crucial for a fair and realistic evaluation.
Hence, the question arises how to choose vulnerabilities, functions and exploits.
Our approach was as follows: For the presented sample network we chose specific
and commonly used software and searched the CVSS database and metasploit
database for related entries since 2016. For each CVSS entry with a high score
we manually checked if the vulnerability is likely to be applicable in our scenario.
In particular, we chose to implement exploits that resulted either in remote code
execution, privilege escalation or the retrieval of information (e.g credentials,
RAM content etc.). We then manually modeled an exploit for the respective
vulnerability with a high level of detail regarding its requirements and effects.
Similarly, we manually modeled realistic legitimate functions of the assumed
applications and systems which could also give the attacker execution rights or
valuable information. Examples of such legitimate functions are remote shell for
operating systems to gain remote code execution privileges, ARP-cache lookups
to retrieve IP addresses, or SQL queries to retrieve information from databases.

One important aspect is defining the duration of an exploit as well as the at-
tack success probability. Although the CVSS entries include parameters that are
related to an exploit’s duration and likelihood of success (e.g. attack complexity,
exploit code maturity etc.), specific figures for these measures cannot be derived
from a given score. We, therefore, manually determined values for duration and
success rate based on a vulnerability’s description, the underlying mechanism,
and the availability of exploit code (e.g. in metasploit), noting that these values
could potentially be optimized with data obtained from real world attacks.

In total we modeled 16 exploits as well as 10 legitimate functions an attacker
can call, resulting in 26 executable functions from an attacker’s perspective.
Table 2 shows a few example functions to provide an impression of the level of
detail used in our simulation. A table listing all functions with their requirements
and effects can be found in the appendix.

Table 2. Example of attacker actions that were used in simulations that reached a
revenue level of 100 points in the experiment depicted in Figure 3(c).

Name: phishingDocRCE (CVE-2016-0099) [exploit, metasploit exists]
Result: Attacker.remoteCodeExe+=App; Time and probability: 200 / 0.02,0.03, or 0.05 (de-
pends on client)
Requirements: App=officeSuite & OS.family=windows & OS=App.parent &
App.isPhishingVulnerable
Name: getCustomerData [legitimate function]
Result: Attacker.knows+=CRMUSER.data; Time and probability: 20 / 1
Requirements:App=baseCrm & CRMUSER=App.user & Attacker.knows=CRMUSER.password
& Attacker.knows=CRMUSER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)
Name: readData [helper function, next step after gaining RCE rights]
Result: Attacker.knows+=App.allData; Time and probability: 60 / 1
Requirements:App=Attacker.remoteCodeExe OR (OS=App.parent &
OS=Attacker.remoteCodeExe)
Name: backupServerRCE (CVE-2016-7399) [exploit, metasploit exists]
Result: Attacker.remoteCodeExe+=OS & Attacker.knows+=App.backupedData;Time and
probability: 33 / 1
Requirements: App=veritasBackupServer & OS=App.parent & OS.family=linux &
App.hasCVE20167399 & (Attacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName)
& Attacker.reachable(OS,Port=tcp)
Name: sqlQuery [legitimate function]
Result: Attacker.knows+=USER.databaseData; Time and probability: 30 / 1
Requirements:App=sqlServer & USER=App.databaseUser & Attacker.knows=USER.password
& Attacker.knows=USER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=sqlport)

5 Experimental results

We performed two independent experiments, one in which the attacker could uti-
lize exploits based on vulnerabilities published in 2016 (4 exploits plus 10 legit-
imate functions) and one with exploits based on vulnerabilities from 2017/2018
(12 exploits and 10 legitimate functions). In both cases we tested the perfor-
mance when using no defense technique, live migration, cold migration, IP shuf-
fling, and VM resetting. Each simulation was started 100 times and consisted of
8000 rounds each. Furthermore, we defined three revenue thresholds of 40, 75
and 100 points respectively and measured how many simulations reached these
thresholds for a given number of rounds. The results are depicted in Figure 2.

In the experiment where exploits from 2017 and 2018 were used, no significant
difference between having no defense technique, IP shuffling or live migration can
be observed. The attack was successful fairly quick and all simulations achieved
the maximum revenue of 100 points. When VM resetting or cold migration were
enabled, it took more rounds for the attacker to reach revenue levels of 75 or 100.
Hence, one can say that they had a positive impact on security. Cold migration
is the combination of live migration, IP shuffling and VM resetting. The fact
that cold migration and VM resetting performed nearly identical indicates that
the security gain primarily results from VM resetting and not from migrating
(shuffling) VMs.

In the second experiment only four exploits and ten legitimate functions were
available, resulting in fewer viable attack paths. In this case, all defenses per-
formed similar for a revenue threshold of 40. However, revenue levels of 75 or 100

(a) (b) (c)

(d) (e) (f)

Fig. 2. Results of the attack simulation. Each defense was simulated 100 times for
exploits based on 2017/2018 vulnerabilities (a-c) and 2016 vulnerabilities (d-f). Results
are displayed with regard to reached threshold with the y-axis depicting the percentage
of simulations that reached the respective success threshold for the given round (x-axis).

were only achieved when either live migration or cold migration was enabled. If
no defense technique, IP shuffling or VM resetting was used, these revenue levels
were never reached in any simulation run. The log data of the simulations reveal
that there was only one possible attack path to achieve at least 75 points. The
used attacker actions are listed in Table 2. The first step is that the attacker
launches a successful phishing attack against one of the clients. The attacker can
then use the remote code execution privileges as well as the stolen DNS names to
launch an attack based on exploit “backupserverRCE” (CVE-2016-7399) on the
backup server. These first attack steps are independent from any of the used de-
fense techniques and generate more than 40 revenue points for the attacker. This
is due to data directly found on the attacked client and backup server, as well
as using the Base CRM server with stolen credentials of the client. Besides data
that directly generates revenue, additional useful data is stored in the backup. In
particular, it also contains configuration files of the “Base CRM” and “Tomcat
HR” servers and the corresponding SQL credentials. These SQL credentials can
then be used in the next attack step to retrieve customer data and HR data
using regular SQL queries and database management commands. However, to
perform these regular functions, the attacker needs to be able to communicate
with the SQL servers on host 5 via the SQL port 3302. Both nodes that the
attacker controls — the compromised client (phishing) as well as the backup
server (backupserverRCE) — are not whitelisted to communicate on the SQL
port. Since the backup server and the SQL server are located on different hosts
at the beginning, the firewall blocks such communication attempts. Therefore,

(a) (b) (c)

Fig. 3. The same analysis as in Figure 2 (d-f) but this time the starting position of
the backup server was on host 6 (same as the SQL servers) instead of host 5.

for no defense technique, IP shuffling or VM resetting the attacker cannot call
these SQL functions and, in consequence, never reaches revenue levels of 75 or
above. However, the firewall cannot block communication between VMs on the
same host as they are, by default, attached to the same virtual switch. The log
data reveals that when live migration or cold migration is enabled, the backup
server is shuffled to the same host as the SQL databases roughly one-third of
the times. Hence, whenever the backup server was on the same host as the SQL
database, the attacker could download the data using SQL queries until another
shuffle operation migrated the backup server to a different host.

Please note that this scenario is exactly as discussed by Hong and Kim [10]
to assess the effectiveness of live migration. The migration of VMs changes the
physical connectivity and with it the attack paths. However, as our experiment
shows, this can have a significant negative impact on security as the migration
enables attack paths that would otherwise not exist.

5.1 Never trust a statistic you have not forged yourself

In our experiments depicted in Figure 2, migration had a negative impact on
security. Only the removal of the attacker’s RCE privileges (which is being done
in VM resetting and cold migration) had a notably positive effect on security.
However, resetting VMs only hindered the attacker and made attacks more dif-
ficult with regard to the required time (rounds) to a full compromise but could
not completely fend off attacks. Of course, if resetting is done with a much
higher frequency it is possible to get results in which all attacks are completely
defended. However, such timings are not necessarily very realistic.

Indeed, one can also produce scenarios in which migration has a measurable
positive effect. If we look at the experiment based on the 2016 exploits, the
reason why the attack does not work if no migration is used is that the VMs
of the backup server and the SQL servers are not on the same physical host.
To generate positive results for migration, we therefore modified the starting
position of VMs and moved the backup server to the same host as the SQL
servers. Figure 3 shows the experimental results for this modified case for 2016.
In this case, migration contributed to security. The reason is that with migration
turned on, the backup server and the SQL server were on different hosts two-

thirds of the time, while for the other non-migrating defenses they were always
on the same physical host. Hence, attacking was more difficult in that it took the
attacker more rounds to exfiltrate the data. But please note that the attacker
was still able to exfiltrate all data within 8000 rounds in 90% (live migration)
and 80% (cold migration) of the simulations.

By tuning the scenario, one can heavily influence the results of the attack
simulation. However, attack simulation not only outputs revenue data but also
all attack steps performed by the attacker (i.e., log data). This data can be
used to understand why a defense performed a certain way, which is exactly
what we did to understand and describe the reason why migration performed
so poorly for the 2016 scenario in Figure 2 (e,f). Hence, these log data allow for
a qualitative analysis of the experiments which is useful to put the quantitative
results into the correct context. We would like to point out that this combination
of quantitative and qualitative analysis options is one of the great advantages
compared to other evaluation techniques.

6 Conclusion and future work

In the course of our case study, we conducted experiments with moving tar-
get defenses based on VM shuffling/migration. We showed that while random
VM migration can have a positive effect on security, it is more likely to have
a negative impact on security. VM migration changes the physical connectivity
and therefore influences attack steps. If the starting position is beneficial for the
attacker, moving the VMs increases the attack time because the attacker has
to wait until the VMs have shuffled back to a suitable position. However, if the
starting position does not allow an attack, random VM migration will eventu-
ally shuffle the position such that an attack becomes feasible. That means, the
potential positive impact is only an increase in attack time while the negative
impact is that formerly impossible attacks now become feasible.

Hence, this case study shows that attack simulation based on realistic ex-
ploits, functions and network setups is indeed useful to analyze and compare
defense techniques. One of the main benefits of this simulation approach is that
with the same experiment both a quantitative analysis based on the attacker
revenue as well as a qualitative analysis based on the log file of attack steps is
possible. This combination ensures that one can put the quantitative results into
the correct context.

To summarize, defense evaluation on the basis of attack simulation is not a
technique that generates reliable results at the press of a button. Instead, one
has to verify that the attack simulation models attacks and defenses with suffi-
cient accuracy for the tested defense techniques. In addition, example networks
and exploits must be selected to fit the intended application. Indeed, develop-
ing commonly accepted benchmarks consisting of a range of realistic networks
and exploits would be a very useful future research direction for the network
security community. But if one models the network and exploits with enough
details and uses a suitable scenario, attack simulation is a very helpful tool to

evaluate and compare network security techniques. It is especially useful as a
bridge between often quite theoretical research proposals and quantifiable and
practically relevant results suitable for practitioners and decision makers.

References

1. Al-Shaer, E., Duan, Q., Jafarian, J.H.: Random host mutation for moving target
defense. In: International Conference on Security and Privacy in Communication
Systems. pp. 310–327. Springer (2012)

2. Almohri, H.M.J., Watson, L.T., Evans, D.: Misery digraphs: Delaying intrusion at-
tacks in obscure clouds. IEEE Transactions on Information Forensics and Security
13(6), 1361–1375 (June 2018)

3. Anderson, N., Mitchell, R., Chen, I.R.: Parameterizing moving target defenses.
In: 2016 8th IFIP International Conference on New Technologies, Mobility and
Security (NTMS). pp. 1–6 (Nov 2016)

4. Connell, W., Albanese, M., Venkatesan, S.: A framework for moving target defense
quantification. In: IFIP International Conference on ICT Systems Security and
Privacy Protection. pp. 124–138. Springer (2017)

5. Connell, W., Menascé, D.A., Albanese, M.: Performance modeling of moving target
defenses. In: Proceedings of the 2017 Workshop on Moving Target Defense. pp. 53–
63. MTD ’17, ACM, New York, NY, USA (2017)

6. Dunlop, M., Groat, S., Urbanski, W., Marchany, R., Tront, J.: Mt6d: A moving
target ipv6 defense. In: Military Communications Conference - MILCOM 2011. pp.
1321–1326 (Nov 2011)

7. Evans, D., Nguyen-Tuong, A., Knight, J.: Effectiveness of Moving Target Defenses,
pp. 29–48. Springer (2011)

8. Holm, H., Shahzad, K., Buschle, M., Ekstedt, M.: P2 CySeMoL: Predictive, prob-
abilistic cyber security modeling language. IEEE Transactions on Dependable and
Secure Computing 12(6), 626–639 (Nov 2015)

9. Holm, H., Sommestad, T., Ekstedt, M., Nordström, L.: CySeMoL: A tool for cyber
security analysis of enterprises. In: 22nd International Conference and Exhibition
on Electricity Distribution (CIRED 2013). pp. 1–4 (June 2013)

10. Hong, J.B., Kim, D.S.: Assessing the effectiveness of moving target defenses using
security models. IEEE Transactions on Dependable and Secure Computing 13(2),
163–177 (March 2016)

11. Jajodia, S., Noel, S., Kalapa, P., Albanese, M., Williams, J.: Cauldron mission-
centric cyber situational awareness with defense in depth. In: Military Communi-
cations Conference - MILCOM 2011. pp. 1339–1344 (2011)

12. Jajodia, S., Noel, S., O’Berry, B.: Topological Analysis of Network Attack Vulner-
ability, pp. 247–266. Springer US, Boston, MA (2005)

13. Johnson, P., Vernotte, A., Ekstedt, M., Lagerström, R.: pwnpr3d: an attack-graph-
driven probabilistic threat-modeling approach. In: Availability, Reliability and Se-
curity (ARES), 2016 11th International Conference on. pp. 278–283. IEEE (2016)

14. Kampanakis, P., Perros, H., Beyene, T.: SDN-based solutions for moving target
defense network protection. In: Proceeding of IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks 2014. pp. 1–6 (June 2014)

15. Kewley, D., Fink, R., Lowry, J., Dean, M.: Dynamic approaches to thwart adver-
sary intelligence gathering. In: DARPA Information Survivability Conference amp;
Exposition II, 2001. DISCEX ’01. Proceedings. vol. 1, pp. 176–185 vol.1 (2001)

16. Li, J., Yackoski, J., Evancich, N.: Moving target defense: A journey from idea to
product. In: Proceedings of the 2016 ACM Workshop on Moving Target Defense.
pp. 69–79. MTD ’16, ACM (2016)

17. MacFarland, D.C., Shue, C.A.: The sdn shuffle: Creating a moving-target defense
using host-based software-defined networking. In: Proceedings of the Second ACM
Workshop on Moving Target Defense. pp. 37–41. MTD ’15, ACM (2015)

18. Maleki, H., Valizadeh, S., Koch, W., Bestavros, A., van Dijk, M.: Markov modeling
of moving target defense games. In: Proceedings of the 2016 ACM Workshop on
Moving Target Defense. pp. 81–92. MTD ’16, ACM (2016)

19. Neupane, R.L., Neely, T., Chettri, N., Vassell, M., Zhang, Y., Calyam, P., Du-
rairajan, R.: Dolus: Cyber defense using pretense against ddos attacks in cloud
platforms. In: Proceedings of the 19th International Conference on Distributed
Computing and Networking. pp. 30:1–30:10. ICDCN ’18, ACM (2018)

20. Ou, X., Govindavajhala, S., Appel, A.W.: Mulval: A logic-based network security
analyzer. In: USENIX Security Symposium. pp. 8–8. Baltimore, MD (2005)

21. Prakash, A., Wellman, M.P.: Empirical game-theoretic analysis for moving target
defense. In: Proceedings of the Second ACM Workshop on Moving Target Defense.
pp. 57–65. MTD ’15, ACM, New York, NY, USA (2015)

22. Schmidt, S., Bye, R., Chinnow, J., Bsufka, K., Camtepe, A., Albayrak, S.:
Application-level simulation for network security. SIMULATION 86(5-6), 311–330
(2010)

23. Taylor, J., Zaffarano, K., Koller, B., Bancroft, C., Syversen, J.: Automated effec-
tiveness evaluation of moving target defenses: Metrics for missions and attacks. In:
Proceedings of the 2016 ACM Workshop on Moving Target Defense. pp. 129–134.
MTD ’16, ACM, New York, NY, USA (2016)

24. Vadlamudi, S.G., Sengupta, S., Taguinod, M., Zhao, Z., Doupé, A., Ahn, G.J.,
Kambhampati, S.: Moving target defense for web applications using bayesian stack-
elberg games: (extended abstract). In: Proceedings of the 2016 International Con-
ference on Autonomous Agents and Multiagent Systems. pp. 1377–1378. AAMAS
’16 (2016)

25. Venkatesan, S., Albanese, M., Cybenko, G., Jajodia, S.: A moving target defense
approach to disrupting stealthy botnets. In: Proceedings of the 2016 ACM Work-
shop on Moving Target Defense. pp. 37–46. MTD ’16, ACM (2016)

26. Vernotte, A., Johnson, P., Ekstedt, M., Lagerstrm, R.: In-depth modeling of the
unix operating system for architectural cyber security analysis. In: 2017 IEEE 21st
International Enterprise Distributed Object Computing Workshop (EDOCW). pp.
127–136 (Oct 2017)

27. Wang, H., Li, F., Chen, S.: Towards cost-effective moving target defense against
ddos and covert channel attacks. In: Proceedings of the 2016 ACM Workshop on
Moving Target Defense. pp. 15–25. MTD ’16, ACM, New York, NY, USA (2016)

28. Zaffarano, K., Taylor, J., Hamilton, S.: A quantitative framework for moving target
defense effectiveness evaluation. In: Proceedings of the Second ACM Workshop on
Moving Target Defense. pp. 3–10. MTD ’15, ACM (2015)

29. Zhuang, R., DeLoach, S.A., Ou, X.: A model for analyzing the effect of moving
target defenses on enterprise networks. In: Proceedings of the 9th Annual Cyber
and Information Security Research Conference. pp. 73–76. CISR ’14, ACM, New
York, NY, USA (2014)

30. Zhuang, R., Zhang, S., DeLoach, S.A., Ou, X., Singhal, A.: Simulation-based ap-
proaches to studying effectiveness of moving-target network defense. In: National
Symposium on Moving Target Research. NIST (2012)

A Appendix

Table 4 lists the modeled exploits and Table 3 legitimate system functions that
can be used by an attacker.

Table 3. Overview of attacker actions based on legitimate functions

Name: readData (helper function, next step after gaining RCE rights)

Result: Attacker.knows+=App.allData; Time and probability: 20 / 33

Requirements:App=Attacker.remoteCodeExe OR (OS=App.parent & OS=Attacker.remoteCodeExe)

Name: pingscan

Result: Attacker.knows+=OS.ipaddress; Time and probability: 20 / 33

Requirements: Attacker.reachable(OS,Port=ping)

Name: arpCache (gives attacker all IP-addresses of the subnet of a compromised system)

Result: Attacker.knows+=TARGET.ipaddress; Time and probability: 20 / 33

Requirements:(App=Attacker.remoteCodeExe OR OS=Attacker.remoteCodeExe) & OS=App.parent & SUB-
NET=OS.belongsToSubnet & TARGET.belongsToSubnet=SUBNET

Name: configureActiveDirectoryClients

Result: Attacker.remoteCodeExe+=TARGET; Time and probability: 20 / 33

Requirements: App=activeDirectory & Attacker.remoteCodeExe=App & TARGET=App.clients

Name: getCustomerData

Result: Attacker.knows+=CRMUSER.data; Time and probability: 20 / 33

Requirements:App=baseCrm & CRMUSER=App.user & Attacker.knows=CRMUSER.password &
Attacker.knows=CRMUSER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: getMail

Result: Attacker.knows+=CRMUSER.data; Time and probability: 20 / 33

Requirements:App=exchangeServer & EMAILUSER=App.user & Attacker.knows=EMAILUSER.password
& Attacker.knows=EMAILUSER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: remoteDatabaseManagement

Result: Attacker.knows+=App.allDatabaseData; Time and probability: 20 / 33

Requirements:App=sqlServer & ADMIN=App.admin & Attacker.knows=ADMIN.password & At-
tacker.knows=ADMIN.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=SQLPORT)

Name: sqlQuery

Result: Attacker.knows+=USER.databaseData; Time and probability: 20 / 33

Requirements:App=sqlServer & USER=App.databaseUser & Attacker.knows=USER.password &
Attacker.knows=USER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=sqlport)

Name: remoteShellLinux

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: OS.family=Linux & OS.remoteShellEnabled & ADMIN=OS.root & At-
tacker.knows=ADMIN.password & Attacker.knows=ADMIN.username & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=22)

Name: remoteShellWindows

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: OS.family=Windows & OS.remoteShellEnabled & ADMIN=OS.root & At-
tacker.knows=ADMIN.password & Attacker.knows=ADMIN.username & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=3389)

Table 4. Overview of attacker actions based on exploits

Name: tomPrivEscalation (CVE-2016-9775, CVE2016-9774)

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: App=tomcat & App.hasTomPriv & Attacker.remoteCodeExe=App & OS=Linux

Name: privEscalationWindows (CVE-2016-0026) metasploit exists

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: (OS=Windows10 OR WindowsServer2016) & OS.hasWinPrivEscalation & At-
tacker.remoteCodeExe=App

Name: backupServerRCE (CVE-2016-7399) metasploit exists

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: App=veritasBackupServer & OS=App.parent & OS.family=linux & App.hasCVE20167399 & (At-
tacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: phishingDocRCE (CVE-2016-0099) metasploit exists

Result: Attacker.remoteCodeExe+=App; Time and probability: 20 / 33

Requirements: App=officeSuite & OS.family=windows & OS=App.parent & App.isPhishingVulnerable

Name: tomHttpPutRCE (CVE-2017-12615, CVE-2017-12617)

Result: Attacker.remoteCodeExe+=App; Time and probability: 20 / 33

Requirements: App=tomcat & App.hasHttpPutVulnerability & OS=App.parent &(Attacker.knows=OS.ipaddress
OR Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=jmxport)

Name: jmxTomcatVulnerability (Blog 2017)

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: App=tomcat & App.hasJmxEnabled & OS=App.parent & (Attacker.knows=OS.ipaddress
OR Attacker.knows=OS.dnsName) & (App.jmxNoAuth OR (Attacker.knowsUsername(App) & At-
tacker.knowsPassword(App)) & Attacker.reachable(OS,jmxport)

Name: privEscalationUbuntu (CVE-2017-0358)

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: OS=Ubuntu & OS.hasUbuntuPrivEscalation & OS=App.parent & Attacker.remoteCodeExe=App

Name: eternalBlueRCE (CVE-2017-0143 to 0148) metasploit exists

Result: Attacker.remoteCodeExe=OS; Time and probability: 20 / 33

Requirements: OS.family=Windows & OS.hasEternalBlue & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=smb)

Name: redirectBackupToCloud (CVE-2017-6409)

Result: Attacker.knows+=App.backupedData; Time and probability: 20 / 33

Requirements: App=veritasBackupServer & App.hasCloudVuln & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp/5637)

Name: backupClientRCE (CVE-2017-8895) metasploit exists

Result: Attacker.remoteCodeExe=OS; Time and probability: 20 / 33

Requirements: App=veritasBackupClient & Attacker.parent=OS & OS.family=windows & APP.hasSSLVuln &
(Attacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) & Attacker.reachable(Os,Port=ssl)

Name: clientRCEoverServer (CVE-2017-6407)

Result: Attacker.remoteCodeExe=OS; Time and probability: 20 / 33

Requirements: App=veritasBackupClient & App.hasRCEfromServer & SERVER=App.server & At-
tacker.remoteCodeExe=SERVER & OS=App.parent & Attacker.knows=OS.ipaddres & reachable(OS,Port=ssl)

Name: meltdown (CVE-2017-5715, 2017-5753)

Result: Attacker.knows+=Node.dataInRAM; Time and probability:

Requirements: NODE.type=Intel & OS.runsOn=NODE & OS.hasMeltdown & App.parent=OS & At-
tacker.remoteCodeExe=App

Name: drupalRCE (CVE-2017-5715, 2017-5753) metasploit exists

Result: Attacker.remoteCodeExe+=App ; Time and probability:

Requirements: App=drupal & App.hasRCEviaHttpGetVuln OS=App.parent & (Attacker.knows=OS.ipaddress
OR Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=http)

Name: sendMailExchangeRCE (CVE-2018-8154)

Result: Attacker.remoteCodeExe+=App ; Time and probability:

Requirements: App=exchangeServer & OS=App.parent & OS.family=windows & USER=App.emailuser &
Attacker.knows=USER.username & Attacker.knows=USER.password & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName)

Name: exchangeDefenderRCE (CVE-2018-0986)

Result: Attacker.remoteCodeExe+=App; Time and probability:

Requirements: App=exchangeServer & OS=App.parent & (Attacker.knows=OS.ipaddress OR At-
tacker.knows=OS.dnsName)

